计算机网络的两个基本特征

简介: 计算机网络的两个基本特征

计算机网络的两个基本特征

计算机网络的主要特征是将地理位置不同的具有独立功能的多台计算机及其外部设备,通过通信线路连接起来,在网络操作系统,网络管理软件及网络通信协议的管理和协调下,实现资源共享和信息传递的计算机系统。
计算机网络也称计算机通信网。关于计算机网络的最简单定义是:一些相互连接的、以共享资源为目的的、自治的计算机的集合。若按此定义,则早期的面向终端的网络都不能算是计算机网络,而只能称为联机系统(因为那时的许多终端不能算是自治的计算机)。
但随着硬件价格的下降,许多终端都具有一定的智能,因而“终端”和“自治的计算机”逐渐失去了严格的界限。若用微型计算机作为终端使用,按上述定义,则早期的那种面向终端的网络也可称为计算机网络。
扩展资料:
计算机网络是计算机技术与通信技术相结合的产物。随着计算机技术和通信技术的不断发展,计算机网络也经历了从简单到复杂,从单机到多机的发展过程,其发展过程大致可以细分为以下几个阶段。
第一个阶段:面向终端的计算机网络。
20世纪50~60年代,计算机网络进入到面向终端的阶段,以主机为中心,通过计算机实现与远程终端的数据通信。
第二阶段:多台计算机互连的计算机网络。
计算机网络发展的第二个阶段是以通信子网为中心的网络阶段(又称为“计算机-计算机网络阶段”),它是在20世纪60年代中期发展起来的,由若干台计算机相互连接成一个系统,即利用通信线路将多台计算机连接起来,实现了计算机与计算机之间的通信。

互联网两个重要的基本特点:

连通性

共享

网络的网络:计算机网络:由若干的结点和连接这些结点的链路组成。

网络把许多的计算机连接在一起,而互联网则把网络通过路由器连接在一起。互联网是网络的网络。

相关文章
|
6月前
|
机器学习/深度学习 算法 内存技术
【CVPR2021】CondenseNetV2:用于深度网络的稀疏特征再激活
【CVPR2021】CondenseNetV2:用于深度网络的稀疏特征再激活
145 2
【CVPR2021】CondenseNetV2:用于深度网络的稀疏特征再激活
|
6月前
|
机器学习/深度学习 算法 机器人
【论文速递】TMM2023 - FECANet:用特征增强的上下文感知网络增强小样本语义分割
【论文速递】TMM2023 - FECANet:用特征增强的上下文感知网络增强小样本语义分割
|
4月前
|
编解码 Go 文件存储
【YOLOv8改进 - 特征融合NECK】 DAMO-YOLO之RepGFPN :实时目标检测的创新型特征金字塔网络
【YOLOv8改进 - 特征融合NECK】 DAMO-YOLO之RepGFPN :实时目标检测的创新型特征金字塔网络
|
11天前
|
机器学习/深度学习 计算机视觉 网络架构
【YOLO11改进 - C3k2融合】C3k2融合YOLO-MS的MSBlock : 分层特征融合策略,轻量化网络结构
【YOLO11改进 - C3k2融合】C3k2融合YOLO-MS的MSBlock : 分层特征融合策略,轻量化网络结构
|
6月前
|
机器学习/深度学习 算法 计算机视觉
[YOLOv8/YOLOv7/YOLOv5系列算法改进NO.5]改进特征融合网络PANET为BIFPN(更新添加小目标检测层yaml)
本文介绍了改进YOLOv5以解决处理复杂背景时可能出现的错漏检问题。
258 5
|
4月前
|
机器学习/深度学习 计算机视觉
【YOLOv8改进 - 注意力机制】Gather-Excite : 提高网络捕获长距离特征交互的能力
【YOLOv8改进 - 注意力机制】Gather-Excite : 提高网络捕获长距离特征交互的能力
|
4月前
|
机器学习/深度学习 编解码 计算机视觉
【YOLOv8改进 - 特征融合NECK】 GIRAFFEDET之GFPN :广义特征金字塔网络,高效地融合多尺度特征
YOLOv8专栏探讨了目标检测的创新改进,提出了GiraffeDet,一种轻量级主干和深度颈部模块结合的高效检测网络。GiraffeDet使用S2D-chain和GFPN,优化多尺度信息交换,提升检测性能。代码和论文可在相关链接找到。GFPN通过跳跃和跨尺度连接增强信息融合。文章还展示了核心组件如SPPV4、Focus和CSPStage的代码实现。
|
4月前
|
机器学习/深度学习 大数据 计算机视觉
【YOLOv8改进 - 特征融合】 GELAN:YOLOV9 通用高效层聚合网络,高效且涨点
YOLOv8专栏探讨了深度学习中信息瓶颈问题,提出可编程梯度信息(PGI)和广义高效层聚合网络(GELAN),改善轻量级模型的信息利用率。GELAN在MS COCO数据集上表现优越,且PGI适用于不同规模的模型,甚至能超越预训练SOTA。[论文](https://arxiv.org/pdf/2402.13616)和[代码](https://github.com/WongKinYiu/yolov9)已开源。核心组件RepNCSPELAN4整合了RepNCSP块和卷积。更多详情及配置参见相关链接。
|
4月前
|
编解码 计算机视觉 网络架构
【YOLOv10改进- 特征融合NECK】BiFPN:加权双向特征金字塔网络
YOLOv10专栏探讨了目标检测的效率提升,提出BiFPN,一种带加权和自适应融合的双向特征金字塔网络,优化了多尺度信息传递。EfficientDet系列利用这些创新在效率与性能间取得更好平衡,D7模型在COCO测试集上达到55.1 AP。YOLOv8引入MPDIoU,结合BiFPN学习分支权重,提高检测精度。详情见[YOLOv10 创新改进](https://blog.csdn.net/shangyanaf/category_12712258.html)和相关文章。
|
6月前
|
计算机视觉
【YOLOv8改进】 AFPN :渐进特征金字塔网络 (论文笔记+引入代码).md
YOLO目标检测专栏介绍了YOLO的有效改进和实战案例,包括AFPN——一种解决特征金字塔网络信息丢失问题的新方法。AFPN通过非相邻层直接融合和自适应空间融合处理多尺度特征,提高检测性能。此外,还展示了YOLOv8中引入的MPDIoU和ASFF模块的代码实现。详情可参考提供的专栏链接。