Android卡顿优化 | 自动化卡顿检测方案与优化(AndroidPerformanceMonitor / BlockCanary)

本文涉及的产品
云解析 DNS,旗舰版 1个月
全局流量管理 GTM,标准版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
简介: Android卡顿优化 | 自动化卡顿检测方案与优化(AndroidPerformanceMonitor / BlockCanary)

本文要点

  • 为何需要自动化检测方案
  • 自动卡顿检测方案原理
  • 看一下Looper.loop()源码
  • 实现思路
  • AndroidPerformanceMonitor实战
  • 基于AndroidPerformanceMonitor源码简析
  • 接下来我们讨论一下方案的不足
  • 自动检测方案优化

项目GitHub

为何需要自动化检测方案

  • 前面提到过的系统工具只适合线下针对性分析,无法带到线上!
  • 线上及测试环节需要自动化检测方案

方案原理

  • **源于Android的消息处理机制;

一个线程不管有多少Handler,只会有一个Looper存在,
主线程中所有的代码,都会通过Looper.loop()执行;**

  • **loop()中有一个mLogging对象,

它在每个Message处理前后都会被调用:**

  • **如果主线程发生卡顿,

一定是在dispatchMessage执行了耗时操作!**Handler机制图

**由此,我们便可以通过 mLogging对象
dispatchMessage执行的时间进行监控;**

看一下Looper.loop()源码

    public static void loop() {
        final Looper me = myLooper();
        if (me == null) {
            throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
        }
        final MessageQueue queue = me.mQueue;

        // Make sure the identity of this thread is that of the local process,
        // and keep track of what that identity token actually is.
        Binder.clearCallingIdentity();
        final long ident = Binder.clearCallingIdentity();

        // Allow overriding a threshold with a system prop. e.g.
        // adb shell 'setprop log.looper.1000.main.slow 1 && stop && start'
        final int thresholdOverride =
                SystemProperties.getInt("log.looper."
                        + Process.myUid() + "."
                        + Thread.currentThread().getName()
                        + ".slow", 0);

        boolean slowDeliveryDetected = false;

        for (;;) {
            Message msg = queue.next(); // might block
            if (msg == null) {
                // No message indicates that the message queue is quitting.
                return;
            }

            // This must be in a local variable, in case a UI event sets the logger
            final Printer logging = me.mLogging;
            if (logging != null) {
                logging.println(">>>>> Dispatching to " + msg.target + " " +
                        msg.callback + ": " + msg.what);
            }

            final long traceTag = me.mTraceTag;
            long slowDispatchThresholdMs = me.mSlowDispatchThresholdMs;
            long slowDeliveryThresholdMs = me.mSlowDeliveryThresholdMs;
            if (thresholdOverride > 0) {
                slowDispatchThresholdMs = thresholdOverride;
                slowDeliveryThresholdMs = thresholdOverride;
            }
            final boolean logSlowDelivery = (slowDeliveryThresholdMs > 0) && (msg.when > 0);
            final boolean logSlowDispatch = (slowDispatchThresholdMs > 0);

            final boolean needStartTime = logSlowDelivery || logSlowDispatch;
            final boolean needEndTime = logSlowDispatch;

            if (traceTag != 0 && Trace.isTagEnabled(traceTag)) {
                Trace.traceBegin(traceTag, msg.target.getTraceName(msg));
            }

            final long dispatchStart = needStartTime ? SystemClock.uptimeMillis() : 0;
            final long dispatchEnd;
            try {
                msg.target.dispatchMessage(msg);
                dispatchEnd = needEndTime ? SystemClock.uptimeMillis() : 0;
            } finally {
                if (traceTag != 0) {
                    Trace.traceEnd(traceTag);
                }
            }
            if (logSlowDelivery) {
                if (slowDeliveryDetected) {
                    if ((dispatchStart - msg.when) <= 10) {
                        Slog.w(TAG, "Drained");
                        slowDeliveryDetected = false;
                    }
                } else {
                    if (showSlowLog(slowDeliveryThresholdMs, msg.when, dispatchStart, "delivery",
                            msg)) {
                        // Once we write a slow delivery log, suppress until the queue drains.
                        slowDeliveryDetected = true;
                    }
                }
            }
            if (logSlowDispatch) {
                showSlowLog(slowDispatchThresholdMs, dispatchStart, dispatchEnd, "dispatch", msg);
            }

            if (logging != null) {
                logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);
            }

            // Make sure that during the course of dispatching the
            // identity of the thread wasn't corrupted.
            final long newIdent = Binder.clearCallingIdentity();
            if (ident != newIdent) {
                Log.wtf(TAG, "Thread identity changed from 0x"
                        + Long.toHexString(ident) + " to 0x"
                        + Long.toHexString(newIdent) + " while dispatching to "
                        + msg.target.getClass().getName() + " "
                        + msg.callback + " what=" + msg.what);
            }

            msg.recycleUnchecked();
        }
    }
  • 里边有一个for循环,

会不断地读取消息队列队头进行处理:

  • 处理之前,会调用logging.println()执行之后再次调用我们可以从打印日志的前缀来判断Message处理的开始结束

实现思路

  • **通过Looper.getMainLooper().setMessageLogging();

来设置我们自己的Logging;
这样每次Message处理的前后,
调用的就是我们自己的Logging;**

  • **如果匹配到>>>>> Dispatching

我们就可以执行一个代码,
即在指定的阈值时间之后,
在子线程中开始执行一个【获取当前子线程的堆栈信息以及当前的一些场景信息(如内存大小、变量、网络状态等)】的任务;

如果匹配到<<<<< Finished
则说明在指定的阈值时间内,Message被执行完成,没有发生卡顿,
那便将这个任务取消掉;**

AndroidPerformanceMonitor实战

  • AndroidPerformanceMonitor原理:便是上述的实现思路和原理;
  • **特性1:非侵入式的性能监控组件

可以用通知的方式 弹出卡顿信息,同时用logcat打印出关于卡顿的详细信息;
可以检测所有线程中执行的任何方法,又不需要手动埋点,
设置好阈值等配置,就“坐享其成”,等卡顿问题“愿者上钩”!!**

  • 特性2:方便精确,可以把问题定位到代码的具体某一行!!!

【方案的不足 以及框架源码解析 在下面实战之后总结!!】


实战开始---------------------------------------------------

在Application进行初始化,
BlockCanary.install(this, new AppBlockCanaryContext()).start();
第一个参数是上下文
第二个参数是需要传入一个Block的配置类实例【BlockCanaryContext类实例或者其子类实例】:**

public class TestApp extends Application {

    @Override
    public void onCreate() {
        super.onCreate();
        ...

        //AndroidPerformanceMonitor测试
        BlockCanary.install(this, new AppBlockCanaryContext()).start();

    }
}    
  • **AppBlockCanaryContext是我们自定义的类,

配置了BlockCanary的各种信息,
代码较多,可以看下GitHub,这里就不贴全部代码了~
下面两个配置方法分别是
给出一个uid,可以用于在上报时上报当前的用户信息
第二个是自定义卡顿的阈值时间,过了阈值便认为是卡顿,
这里指定的是500ms;**

    /**
     * Implement in your project.
     *
     * @return user id
     */
    public String provideUid() {
        return "uid";
    }

    /**
     * Config block threshold (in millis), dispatch over this duration is regarded as a BLOCK. You may set it
     * from performance of device.
     *
     * @return threshold in mills
     */
    public int provideBlockThreshold() {
        return 500;
    }
  • **接着在MainActivityonCreate()中,

让主线程沉睡两秒(2000ms > 设定的阈值500ms);**

  • **运行时,因为主线程停滞时间超过既定阈值,

组件会认为其卡顿并且弹出通知!!
当然Android8.0以后比较麻烦,
因为notificationManager需要配置Channel等才能用,
或者允许后台弹出界面桌面上便会出现这个图标:进去之后就可以看到了相应的信息了:当然,我们可以在logcat中定位关键词blockInfo
看到同样的详细的信息:如上,
Block框架打印出来了【当前子线程的堆栈信息以及当前的一些场景信息(如内存大小、变量、网络状态等)】,
time-starttime-end时间间隔又可以知道阻塞的时间,如上图展示出来的,正是我们设置的2秒!!!!
也可以看到uid键的值 便是我们刚刚设定的字符串“uid”
同时还直接帮我们定位到卡顿问题的出处!!!**

**可见得BlockCanary已然
成功检测到 卡顿问题的各种具体信息了!!!**


基于AndroidPerformanceMonitor源码简析

由于篇幅原因,笔者把以下解析内容提取出来单独作一篇博客哈~

目录
1. 监控周期的 定义
2. dump模块 / 关于.log文件
3. 采集堆栈周期的 设定
4. 框架的 配置存储类 以及 文件系统操作封装
5. 文件写入过程(生成.log文件的源码)
6. 上传文件
7. 设计模式、技巧
8. 框架中各个主要类的功能划分



接下来我们讨论一下方案的不足

  • 不足1:确实检测到卡顿,但获取到的卡顿堆栈信息可能不准确;
  • **不足2:和OOM一样,最后的打印堆栈只是表象,不是真正的问题;

我们还需要监控过程中的一次次log信息来确定原因;
【假设初始方案,整个监控周期只采集一次】
如上图,
假设主线程
时间点T1(Message分发、处理前)T2(Message分发、处理后)之间的时间段中发生了卡顿,
卡顿检测方案是在T2时刻
也就是 阻塞时间完全结束 (前提是T2-T1大于阈值,确定了是卡顿问题)的时刻,
方案才开始获取卡顿堆栈的信息

实际发生卡顿(如发生违例耗时处理过程)的时间点
可能是在这个时间段内,而非获取信息的T2点,
那有可能,
耗时操作时间段内,即在T2点之前就已经执行完成了,
T2点获取到的可能不是卡顿发生的准确时刻,
也就是说T2时刻获取到的信息,不能够完全反映卡顿的现场
最后的T2点的堆栈信息只是表象,不能反映真正的问题;

我们需要缩小采集堆栈信息的周期,进行高频采集,详细如下;**

自动检测方案优化

  • 优化思路:获取监控周期内的多个堆栈,而不仅是一个;
  • **主要步骤:

startMonitor开始监控(Message分发、处理前),
接着高频采集堆栈!!!
阻塞结束,Message分发、处理后,前后时间差——阻塞时间超过阈值,即发生卡顿,便调用endMonitor(Message分发、处理后);
记录 高频采集好的堆栈信息 到文件中;【具体源码解析见上面解析部分(另一篇博客)】
在合适的时机上报给服务器;【相关方案以及源码解析见上面解析部分(另一篇博客)】**

  • **如此一来,

便能更清楚地知道在整个卡顿周期(阻塞开始到结束;Message分发、处理前到后)之内,
究竟是哪些方法在执行,哪些方法执行比较耗时;
优化卡顿现场不能还原的问题;**

  • 新问题:面对 高频卡顿堆栈信息的上报、处理,服务端有压力;

    • 突破点:一个卡顿下多个堆栈大概率有重复;
    • **解决:对一个卡顿下的堆栈进行hash排重,

找出重复的堆栈;**

  • 效果:极大地减少展示量,同时更高效地找到卡顿堆栈;





参考:

相关文章
|
5天前
|
运维 监控 Linux
自动化运维:如何利用Python脚本优化日常任务##
【10月更文挑战第29天】在现代IT运维中,自动化已成为提升效率、减少人为错误的关键技术。本文将介绍如何通过Python脚本来简化和自动化日常的运维任务,从而让运维人员能够专注于更高层次的工作。从备份管理到系统监控,再到日志分析,我们将一步步展示如何编写实用的Python脚本来处理这些任务。 ##
|
23天前
|
调度 Android开发 开发者
构建高效Android应用:探究Kotlin多线程优化策略
【10月更文挑战第11天】本文探讨了如何在Kotlin中实现高效的多线程方案,特别是在Android应用开发中。通过介绍Kotlin协程的基础知识、异步数据加载的实际案例,以及合理使用不同调度器的方法,帮助开发者提升应用性能和用户体验。
40 4
|
2月前
|
存储 缓存 编解码
Android经典面试题之图片Bitmap怎么做优化
本文介绍了图片相关的内存优化方法,包括分辨率适配、图片压缩与缓存。文中详细讲解了如何根据不同分辨率放置图片资源,避免图片拉伸变形;并通过示例代码展示了使用`BitmapFactory.Options`进行图片压缩的具体步骤。此外,还介绍了Glide等第三方库如何利用LRU算法实现高效图片缓存。
61 20
Android经典面试题之图片Bitmap怎么做优化
|
5天前
|
安全 Android开发 iOS开发
深入探索iOS与Android系统的差异性及优化策略
在当今数字化时代,移动操作系统的竞争尤为激烈,其中iOS和Android作为市场上的两大巨头,各自拥有庞大的用户基础和独特的技术特点。本文旨在通过对比分析iOS与Android的核心差异,探讨各自的优势与局限,并提出针对性的优化策略,以期为用户提供更优质的使用体验和为开发者提供有价值的参考。
|
27天前
|
存储 运维 监控
高效运维管理:从基础架构优化到自动化实践
在当今数字化时代,高效运维管理已成为企业IT部门的重要任务。本文将探讨如何通过基础架构优化和自动化实践来提升运维效率,确保系统的稳定性和可靠性。我们将从服务器选型、存储优化、网络配置等方面入手,逐步引导读者了解运维管理的核心内容。同时,我们还将介绍自动化工具的使用,帮助运维人员提高工作效率,降低人为错误的发生。通过本文的学习,您将掌握高效运维管理的关键技巧,为企业的发展提供有力支持。
|
1月前
|
设计模式 Java Android开发
安卓应用开发中的内存泄漏检测与修复
【9月更文挑战第30天】在安卓应用开发过程中,内存泄漏是一个常见而又棘手的问题。它不仅会导致应用运行缓慢,还可能引发应用崩溃,严重影响用户体验。本文将深入探讨如何检测和修复内存泄漏,以提升应用性能和稳定性。我们将通过一个具体的代码示例,展示如何使用Android Studio的Memory Profiler工具来定位内存泄漏,并介绍几种常见的内存泄漏场景及其解决方案。无论你是初学者还是有经验的开发者,这篇文章都将为你提供实用的技巧和方法,帮助你打造更优质的安卓应用。
|
2月前
|
开发框架 Dart 前端开发
Android 跨平台方案对比之Flutter 和 React Native
本文对比了 Flutter 和 React Native 这两个跨平台移动应用开发框架。Flutter 使用 Dart 语言,提供接近原生的性能和丰富的组件库;React Native 则基于 JavaScript,具备庞大的社区支持和灵活性。两者各有优势,选择时需考虑团队技能和项目需求。
322 8
|
2月前
|
Java Android开发 UED
安卓应用开发中的内存管理优化技巧
在安卓开发的广阔天地里,内存管理是一块让开发者既爱又恨的领域。它如同一位严苛的考官,时刻考验着开发者的智慧与耐心。然而,只要我们掌握了正确的优化技巧,就能够驯服这位考官,让我们的应用在性能和用户体验上更上一层楼。本文将带你走进内存管理的迷宫,用通俗易懂的语言解读那些看似复杂的优化策略,让你的开发之路更加顺畅。
55 2
|
2月前
|
监控 算法 数据可视化
深入解析Android应用开发中的高效内存管理策略在移动应用开发领域,Android平台因其开放性和灵活性备受开发者青睐。然而,随之而来的是内存管理的复杂性,这对开发者提出了更高的要求。高效的内存管理不仅能够提升应用的性能,还能有效避免因内存泄漏导致的应用崩溃。本文将探讨Android应用开发中的内存管理问题,并提供一系列实用的优化策略,帮助开发者打造更稳定、更高效的应用。
在Android开发中,内存管理是一个绕不开的话题。良好的内存管理机制不仅可以提高应用的运行效率,还能有效预防内存泄漏和过度消耗,从而延长电池寿命并提升用户体验。本文从Android内存管理的基本原理出发,详细讨论了几种常见的内存管理技巧,包括内存泄漏的检测与修复、内存分配与回收的优化方法,以及如何通过合理的编程习惯减少内存开销。通过对这些内容的阐述,旨在为Android开发者提供一套系统化的内存优化指南,助力开发出更加流畅稳定的应用。
68 0
|
1月前
|
机器学习/深度学习 人工智能 运维
构建高效运维体系:从自动化到智能化的演进
本文探讨了如何通过自动化和智能化手段,提升IT运维效率与质量。首先介绍了自动化在简化操作、减少错误中的作用;然后阐述了智能化技术如AI在预测故障、优化资源中的应用;最后讨论了如何构建一个既自动化又智能的运维体系,以实现高效、稳定和安全的IT环境。
57 4