Python:mysql-connector-python查询不到新增数据

简介: Python:mysql-connector-python查询不到新增数据

查询代码

# -*- coding: utf-8 -*-
import time
import mysql.connector
config = {
    "database": "data",
    "username": "root",
    "password": "123456",
    "host": "127.0.0.1",
    "port": 3306
}
connect = mysql.connector.Connect(**config)
cursor = connect.cursor(dictionary=True)
while True:
    cursor.execute("SELECT * FROM person")
    result = cursor.fetchall()  # fetchall() 获取所有记录
    time.sleep(2)
    print(result)
# 关闭游标和连接
cursor.close()
connect.close()


当执行以上代码时,在MySQL数据库修改数据(增、删、改)没法获取到修改后的数据


翻阅文档10.2.35 MySQLConnection.autocommit Property发现一句话


When the autocommit is turned off, 
you must commit transactions when using transactional storage engines such as InnoDB or NDBCluster.

经测试,以下两个方式都能解决查询新数据的问题

  1. 配置参数autocommit=True
  2. 执行后手动commit

修改后的代码如下

# -*- coding: utf-8 -*-
import time
import mysql.connector
config = {
    "database": "data",
    "username": "root",
    "password": "123456",
    "host": "127.0.0.1",
    "port": 3306,
    "autocommit": True
}
connect = mysql.connector.Connect(**config)
cursor = connect.cursor(dictionary=True)
while True:
    cursor.execute("SELECT * FROM person")
    result = cursor.fetchall()  # 获取所有记录
    time.sleep(2)
    print(result)
    print(connect.in_transaction)
    # 如果不commit,数据库新增、删除、修改的数据没法查询到
    # connect.commit()
# 关闭游标和连接
cursor.close()
connect.close()
相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
MySQL数据库入门学习
本课程通过最流行的开源数据库MySQL带你了解数据库的世界。   相关的阿里云产品:云数据库RDS MySQL 版 阿里云关系型数据库RDS(Relational Database Service)是一种稳定可靠、可弹性伸缩的在线数据库服务,提供容灾、备份、恢复、迁移等方面的全套解决方案,彻底解决数据库运维的烦恼。 了解产品详情: https://www.aliyun.com/product/rds/mysql 
相关文章
|
2月前
|
数据采集 Web App开发 数据可视化
Python零基础爬取东方财富网股票行情数据指南
东方财富网数据稳定、反爬宽松,适合爬虫入门。本文详解使用Python抓取股票行情数据,涵盖请求发送、HTML解析、动态加载处理、代理IP切换及数据可视化,助你快速掌握金融数据爬取技能。
1470 1
|
2月前
|
Java 数据挖掘 数据处理
(Pandas)Python做数据处理必选框架之一!(一):介绍Pandas中的两个数据结构;刨析Series:如何访问数据;数据去重、取众数、总和、标准差、方差、平均值等;判断缺失值、获取索引...
Pandas 是一个开源的数据分析和数据处理库,它是基于 Python 编程语言的。 Pandas 提供了易于使用的数据结构和数据分析工具,特别适用于处理结构化数据,如表格型数据(类似于Excel表格)。 Pandas 是数据科学和分析领域中常用的工具之一,它使得用户能够轻松地从各种数据源中导入数据,并对数据进行高效的操作和分析。 Pandas 主要引入了两种新的数据结构:Series 和 DataFrame。
454 0
|
2月前
|
JSON 算法 API
Python采集淘宝商品评论API接口及JSON数据返回全程指南
Python采集淘宝商品评论API接口及JSON数据返回全程指南
|
2月前
|
JSON API 数据安全/隐私保护
Python采集淘宝拍立淘按图搜索API接口及JSON数据返回全流程指南
通过以上流程,可实现淘宝拍立淘按图搜索的完整调用链路,并获取结构化的JSON商品数据,支撑电商比价、智能推荐等业务场景。
|
3月前
|
SQL 关系型数据库 MySQL
MySQL的查询操作语法要点
储存过程(Stored Procedures) 和 函数(Functions) : 储存过程和函数允许用户编写 SQL 脚本执行复杂任务.
245 14
|
3月前
|
SQL 关系型数据库 MySQL
MySQL的查询操作语法要点
以上概述了MySQL 中常见且重要 的几种 SQL 查询及其相关概念 这些知识点对任何希望有效利用 MySQL 进行数据库管理工作者都至关重要
126 15
|
3月前
|
数据采集 关系型数据库 MySQL
python爬取数据存入数据库
Python爬虫结合Scrapy与SQLAlchemy,实现高效数据采集并存入MySQL/PostgreSQL/SQLite。通过ORM映射、连接池优化与批量提交,支持百万级数据高速写入,具备良好的可扩展性与稳定性。
|
3月前
|
JSON API 数据安全/隐私保护
Python采集淘宝评论API接口及JSON数据返回全流程指南
Python采集淘宝评论API接口及JSON数据返回全流程指南
|
3月前
|
数据采集 数据可视化 关系型数据库
基于python大数据的电影数据可视化分析系统
电影分析与可视化平台顺应电影产业数字化趋势,整合大数据处理、人工智能与Web技术,实现电影数据的采集、分析与可视化展示。平台支持票房、评分、观众行为等多维度分析,助力行业洞察与决策,同时提供互动界面,增强观众对电影文化的理解。技术上依托Python、MySQL、Flask、HTML等构建,融合数据采集与AI分析,提升电影行业的数据应用能力。
|
3月前
|
数据可视化 大数据 数据挖掘
基于python大数据的招聘数据可视化分析系统
本系统基于Python开发,整合多渠道招聘数据,利用数据分析与可视化技术,助力企业高效决策。核心功能包括数据采集、智能分析、可视化展示及权限管理,提升招聘效率与人才管理水平,推动人力资源管理数字化转型。

推荐镜像

更多