什么是HADOOP、产生背景、在大数据、云计算中的位置和关系、国内外HADOOP应用案例介绍、就业方向、生态圈以及各组成部分的简介(学习资料中的文档材料)

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 1. HADOOP背景介绍1. 1.1 什么是HADOOP1.        HADOOP是apache旗下的一套开源软件平台2.        HADOOP提供的功能:利用服务器集群,根据用户的自定义业务逻辑,对海量数据进行分布式处理3.        HADOOP的核心组件有A.       HDFS(分布式文件系统)B.       YARN(运算资源调度系统)C.  

1. HADOOP背景介绍

1. 1.1 什么是HADOOP

1.        HADOOP是apache旗下的一套开源软件平台

2.        HADOOP提供的功能:利用服务器集群,根据用户的自定义业务逻辑,对海量数据进行分布式处理

3.        HADOOP的核心组件有

A.       HDFS(分布式文件系统)

B.       YARN(运算资源调度系统)

C.       MAPREDUCE(分布式运算编程框架)

4.        广义上来说,HADOOP通常是指一个更广泛的概念——HADOOP生态圈

2. 1.2 HADOOP产生背景

1.        HADOOP最早起源于Nutch。Nutch的设计目标是构建一个大型的全网搜索引擎,包括网页抓取、索引、查询等功能,但随着抓取网页数量的增加,遇到了严重的可扩展性问题——如何解决数十亿网页的存储和索引问题。

2.        2003年、2004年谷歌发表的两篇论文为该问题提供了可行的解决方案

——分布式文件系统(GFS),可用于处理海量网页的存储

——分布式计算框架MAPREDUCE,可用于处理海量网页的索引计算问题。

3.        Nutch的开发人员完成了相应的开源实现HDFS和MAPREDUCE,并从Nutch中剥离成为独立项目HADOOP,到2008年1月,HADOOP成为Apache顶级项目,迎来了它的快速发展期。

3. 1.3 HADOOP在大数据、云计算中的位置和关系

1.        云计算是分布式计算、并行计算、网格计算、多核计算、网络存储、虚拟化、负载均衡等传统计算机技术和互联网技术融合发展的产物。借助IaaS(基础设施即服务)、PaaS(平台即服务)、SaaS(软件即服务)等业务模式,把强大的计算能力提供给终端用户。

2.        现阶段,云计算的两大底层支撑技术为“虚拟化”和“大数据技术

3.        而HADOOP则是云计算的PaaS层的解决方案之一,并不等同于PaaS,更不等同于云计算本身。

 

4. 1.4 国内外HADOOP应用案例介绍

1、HADOOP应用于数据服务基础平台建设

 

2/HADOOP用于用户画像

 

3、HADOOP用于网站点击流日志数据挖掘

金融行业:个人征信分析

证券行业:投资模型分析

交通行业:车辆、路况监控分析

电信行业:用户上网行为分析

......

 

 

总之:hadoop并不会跟某种具体的行业或者某个具体的业务挂钩,它只是一种用来做海量数据分析处理的工具

5. 1.5 国内HADOOP的就业情况分析

1、  HADOOP就业整体情况

A.       大数据产业已纳入国家十三五规划

B.       各大城市都在进行智慧城市项目建设,而智慧城市的根基就是大数据综合平台

C.       互联网时代数据的种类,增长都呈现爆发式增长,各行业对数据的价值日益重视

D.       相对于传统JAVAEE技术领域来说,大数据领域的人才相对稀缺

E.        随着现代社会的发展,数据处理和数据挖掘的重要性只会增不会减,因此,大数据技术是一个尚在蓬勃发展且具有长远前景的领域

 

 

2、  HADOOP就业职位要求

大数据是个复合专业,包括应用开发、软件平台、算法、数据挖掘等,因此,大数据技术领域的就业选择是多样的,但就HADOOP而言,通常都需要具备以下技能或知识:

A.       HADOOP分布式集群的平台搭建

B.       HADOOP分布式文件系统HDFS的原理理解及使用

C.       HADOOP分布式运算框架MAPREDUCE的原理理解及编程

D.       Hive数据仓库工具的熟练应用

E.        Flume、sqoop、oozie等辅助工具的熟练使用

F.        Shell/python等脚本语言的开发能力


6. 1.6 HADOOP生态圈以及各组成部分的简介

各组件简介[M1] 

 

 

重点组件:

HDFS:分布式文件系统

MAPREDUCE:分布式运算程序开发框架

HIVE:基于大数据技术(文件系统+运算框架)的SQL数据仓库工具

HBASE:基于HADOOP的分布式海量数据库

ZOOKEEPER:分布式协调服务基础组件

Mahout:基于mapreduce/spark/flink等分布式运算框架的机器学习算法库

Oozie:工作流调度框架

Sqoop:数据导入导出工具

Flume:日志数据采集框架

 

 

 


HADOOP(hdfs、MAPREDUCE、yarn)  元老级大数据处理技术框架,擅长离线数据分析

Zookeeper  分布式协调服务基础组件

Hbase 分布式海量数据库,离线分析和在线业务通吃

Hive sql 数据仓库工具,使用方便,功能丰富,基于MR延迟大

Sqoop数据导入导出工具

Flume数据采集框架

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
目录
相关文章
|
2月前
|
分布式计算 监控 大数据
大数据-131 - Flink CEP 案例:检测交易活跃用户、超时未交付
大数据-131 - Flink CEP 案例:检测交易活跃用户、超时未交付
79 0
|
2月前
|
消息中间件 关系型数据库 MySQL
大数据-117 - Flink DataStream Sink 案例:写出到MySQL、写出到Kafka
大数据-117 - Flink DataStream Sink 案例:写出到MySQL、写出到Kafka
171 0
|
2月前
|
存储 分布式计算 算法
大数据-106 Spark Graph X 计算学习 案例:1图的基本计算、2连通图算法、3寻找相同的用户
大数据-106 Spark Graph X 计算学习 案例:1图的基本计算、2连通图算法、3寻找相同的用户
68 0
|
2月前
|
SQL 分布式计算 NoSQL
大数据-164 Apache Kylin Cube优化 案例1 定义衍生维度与对比 超详细
大数据-164 Apache Kylin Cube优化 案例1 定义衍生维度与对比 超详细
34 1
大数据-164 Apache Kylin Cube优化 案例1 定义衍生维度与对比 超详细
|
2月前
|
分布式计算 大数据 Linux
大数据体系知识学习(二):WordCount案例实现及错误总结
这篇文章介绍了如何使用PySpark进行WordCount操作,包括环境配置、代码实现、运行结果和遇到的错误。作者在运行过程中遇到了Py4JJavaError和JAVA_HOME未设置的问题,并通过导入findspark初始化和设置环境变量解决了这些问题。文章还讨论了groupByKey和reduceByKey的区别。
34 1
|
2月前
|
分布式计算 Hadoop 大数据
大数据体系知识学习(一):PySpark和Hadoop环境的搭建与测试
这篇文章是关于大数据体系知识学习的,主要介绍了Apache Spark的基本概念、特点、组件,以及如何安装配置Java、PySpark和Hadoop环境。文章还提供了详细的安装步骤和测试代码,帮助读者搭建和测试大数据环境。
66 1
|
2月前
|
消息中间件 存储 druid
大数据-156 Apache Druid 案例实战 Scala Kafka 订单统计
大数据-156 Apache Druid 案例实战 Scala Kafka 订单统计
44 3
|
2月前
|
存储 大数据 分布式数据库
大数据-165 Apache Kylin Cube优化 案例 2 定义衍生维度及对比 & 聚合组 & RowKeys
大数据-165 Apache Kylin Cube优化 案例 2 定义衍生维度及对比 & 聚合组 & RowKeys
42 1
|
2月前
|
消息中间件 druid 大数据
大数据-153 Apache Druid 案例 从 Kafka 中加载数据并分析(二)
大数据-153 Apache Druid 案例 从 Kafka 中加载数据并分析(二)
35 2
|
2月前
|
消息中间件 分布式计算 druid
大数据-153 Apache Druid 案例 从 Kafka 中加载数据并分析(一)
大数据-153 Apache Druid 案例 从 Kafka 中加载数据并分析(一)
56 1