Python编程:设置Python解释器不生成字节码pyc文件

简介: Python编程:设置Python解释器不生成字节码pyc文件

字节码文件作用

Python解释器将源码转换为字节码 (.pyc文件), 然后再由解释器来执行这些字节码;

下次执行时,如果没有变化,则优先执行生成好的字节码文件

不过有时候也会不好使,明明代码更新了,执行结果还是 没有变化,心累


设置不生成字节码文件

方式一:设置环境变量(最常用的)

export PYTHONDONTWRITEBYTECODE=1

方式二:使用 -B参数

$ python -B test.py

方式三:在导入的地方写

import sys
sys.dont_write_bytecode = True

参考

  1. python如何不生成pyc文件
  2. How to avoid .pyc files?
  3. PYTHON3版本MAIN.PY执行产生中间__PYCACHE__详解
相关文章
|
3月前
|
数据采集 机器学习/深度学习 人工智能
Python:现代编程的首选语言
Python:现代编程的首选语言
315 102
|
3月前
|
数据采集 机器学习/深度学习 算法框架/工具
Python:现代编程的瑞士军刀
Python:现代编程的瑞士军刀
343 104
|
2月前
|
Python
Python编程:运算符详解
本文全面详解Python各类运算符,涵盖算术、比较、逻辑、赋值、位、身份、成员运算符及优先级规则,结合实例代码与运行结果,助你深入掌握Python运算符的使用方法与应用场景。
207 3
|
2月前
|
数据处理 Python
Python编程:类型转换与输入输出
本教程介绍Python中输入输出与类型转换的基础知识,涵盖input()和print()的使用,int()、float()等类型转换方法,并通过综合示例演示数据处理、错误处理及格式化输出,助你掌握核心编程技能。
475 3
|
2月前
|
并行计算 安全 计算机视觉
Python多进程编程:用multiprocessing突破GIL限制
Python中GIL限制多线程性能,尤其在CPU密集型任务中。`multiprocessing`模块通过创建独立进程,绕过GIL,实现真正的并行计算。它支持进程池、队列、管道、共享内存和同步机制,适用于科学计算、图像处理等场景。相比多线程,多进程更适合利用多核优势,虽有较高内存开销,但能显著提升性能。合理使用进程池与通信机制,可最大化效率。
291 3
|
2月前
|
监控 机器人 编译器
如何将python代码打包成exe文件---PyInstaller打包之神
PyInstaller可将Python程序打包为独立可执行文件,无需用户安装Python环境。它自动分析代码依赖,整合解释器、库及资源,支持一键生成exe,方便分发。使用pip安装后,通过简单命令即可完成打包,适合各类项目部署。
|
2月前
|
Java 调度 数据库
Python threading模块:多线程编程的实战指南
本文深入讲解Python多线程编程,涵盖threading模块的核心用法:线程创建、生命周期、同步机制(锁、信号量、条件变量)、线程通信(队列)、守护线程与线程池应用。结合实战案例,如多线程下载器,帮助开发者提升程序并发性能,适用于I/O密集型任务处理。
295 0
|
Linux iOS开发 MacOS
《Python数据科学实践指南》一1.2 Python解释器
由于Python是一门开源语言,所以只要愿意,任何人都可以为其实现一个解释器。目前官方解释器CPython是绝对主流,如果读者有兴趣,可以了解一下其他的版本,比如支持JIT(即时编译)的PyPy,可以把Python编译成C语言的Cython,拥有notebook这样友好、方便编程界面的IPython等。
1360 0

推荐镜像

更多