三分钟搞定 XXL-JOB 分布式任务调度平台

简介: 三分钟搞定 XXL-JOB 分布式任务调度平台
  • 前言
  • xxl-job-admin搭建
  • 整合springboot项目

前言

XXL-JOB是一个轻量级分布式任务调度平台,其核心设计目标是开发迅速、学习简单、轻量级、易扩展。现已开放源代码并接入多家公司线上产品线,开箱即用。

可以前往Gitee地址进行下载使用。

https://gitee.com/xuxueli0323/xxl-job.git

微信图片_20220904201444.png基于 Spring Boot + MyBatis Plus + Vue & Element 实现的后台管理系统 + 用户小程序,支持 RBAC 动态权限、多租户、数据权限、工作流、三方登录、支付、短信、商城等功能。

项目地址:https://github.com/YunaiV/ruoyi-vue-pro

xxl-job-admin搭建

拉取代码

代码结构如下:

微信图片_20220904201514.png

运行SQL文件至本地数据库

微信图片_20220904201519.png

修改xxl-job-admin模块的yml文件

微信图片_20220904201544.png

启动任务调度中心

微信图片_20220904201604.png

浏览器访问默认地址:http://localhost:8080/xxl-job-admin

微信图片_20220904201624.png

账号:admin 密码: 123456 (初始状态下)

登录成功

微信图片_20220904201658.png

到此为止,第一阶段xxl-job-admin模块的部署就完成啦。

基于微服务的思想,构建在 B2C 电商场景下的项目实战。核心技术栈,是 Spring Boot + Dubbo 。未来,会重构成 Spring Cloud Alibaba 。

项目地址:https://github.com/YunaiV/onemall

整合springboot项目

此部分官方已经给出具体案例,我们只需对赶方案例进行整合或修改即可。

微信图片_20220904201716.png

接下来就是如何整合到自己的springboot项目中

一、引入maven依赖

微信图片_20220904201746.png

注意:此处版本要与xxl-job-admin中版本保持一致

二、引入配置类

微信图片_20220904201822.png

只需引入XxlJobConfig配置类即可,其他配置类为该项目其他配置类,与此无关!

可以直接从拉取的项目中复制过来,无需任何修改!!!

复制此类到你的项目中即可!

微信图片_20220904201828.png

@Configuration
public class XxlJobConfig {
    private Logger logger = LoggerFactory.getLogger(XxlJobConfig.class);
    @Value("${xxl.job.admin.addresses}")
    private String adminAddresses;
    @Value("${xxl.job.accessToken}")
    private String accessToken;
    @Value("${xxl.job.executor.appname}")
    private String appname;
    @Value("${xxl.job.executor.address}")
    private String address;
    @Value("${xxl.job.executor.ip}")
    private String ip;
    @Value("${xxl.job.executor.port}")
    private int port;
    @Value("${xxl.job.executor.logpath}")
    private String logPath;
    @Value("${xxl.job.executor.logretentiondays}")
    private int logRetentionDays;
    @Bean
    public XxlJobSpringExecutor xxlJobExecutor() {
        logger.info(">>>>>>>>>>> xxl-job config init.");
        XxlJobSpringExecutor xxlJobSpringExecutor = new XxlJobSpringExecutor();
        xxlJobSpringExecutor.setAdminAddresses(adminAddresses);
        xxlJobSpringExecutor.setAppname(appname);
        xxlJobSpringExecutor.setAddress(address);
        xxlJobSpringExecutor.setIp(ip);
        xxlJobSpringExecutor.setPort(port);
        xxlJobSpringExecutor.setAccessToken(accessToken);
        xxlJobSpringExecutor.setLogPath(logPath);
        xxlJobSpringExecutor.setLogRetentionDays(logRetentionDays);
        return xxlJobSpringExecutor;
    }
    /**
     * 针对多网卡、容器内部署等情况,可借助 "spring-cloud-commons" 提供的 "InetUtils" 组件灵活定制注册IP;
     *
     *      1、引入依赖:
     *          <dependency>
     *             <groupId>org.springframework.cloud</groupId>
     *             <artifactId>spring-cloud-commons</artifactId>
     *             <version>${version}</version>
     *         </dependency>
     *
     *      2、配置文件,或者容器启动变量
     *          spring.cloud.inetutils.preferred-networks: 'xxx.xxx.xxx.'
     *
     *      3、获取IP
     *          String ip_ = inetUtils.findFirstNonLoopbackHostInfo().getIpAddress();
     */
}

三、修改yml配置文件

xxl:
  job:
    admin:
      # 调度中心部署跟地址 [选填]:如调度中心集群部署存在多个地址则用逗号分隔。
      # 执行器将会使用该地址进行"执行器心跳注册"和"任务结果回调";为空则关闭自动注册;
      addresses: http://127.0.0.1:8086/xxl-job-admin
    # 执行器通讯TOKEN [选填]:非空时启用;
    accessToken:
    executor:
      # 执行器AppName [选填]:执行器心跳注册分组依据;为空则关闭自动注册
      appname: xxl-job-executor-mileage
      # 执行器注册 [选填]:优先使用该配置作为注册地址,为空时使用内嵌服务 ”IP:PORT“ 作为注册地址。
      #从而更灵活的支持容器类型执行器动态IP和动态映射端口问题。
      address:
      # 执行器IP [选填]:默认为空表示自动获取IP,多网卡时可手动设置指定IP,该IP不会绑定Host仅作为通讯实用;
      # 地址信息用于 "执行器注册" 和 "调度中心请求并触发任务";
      ip:
      # 执行器端口号 [选填]:小于等于0则自动获取;默认端口为9999,单机部署多个执行器时,注意要配置不同执行器端口;
      port: 8088
      # 执行器运行日志文件存储磁盘路径 [选填] :需要对该路径拥有读写权限;为空则使用默认路径;
      logpath: /data/applogs/xxl-job/jobhandler
      # 执行器日志文件保存天数 [选填] : 过期日志自动清理, 限制值大于等于3时生效; 否则, 如-1, 关闭自动清理功能;
      logretentiondays: 30
logging:
  config: classpath:logback.xml

四、编写测试类

@Component
public class MileageXxlJob {
    private static Logger logger = LoggerFactory.getLogger(SampleXxlJob.class);
    /**
     * 1、简单任务示例(Bean模式)
     */
    @XxlJob("mileageJobHandler")
    public void mileageJobHandler() throws Exception {
        XxlJobHelper.log("XXL-JOB, Hello World.");
        for (int i = 0; i < 5; i++) {
            XxlJobHelper.log("beat at:" + i);
            System.out.println("ok");
            TimeUnit.SECONDS.sleep(2);
        }
        // default success
    }
}

项目目录如下

微信图片_20220904201946.png编写完成后,启动服务!(注意启动顺序,先启动xxl-job-admin模块,再启动您的springboot服务)

五、任务调度中心,配置服务

1.新增执行器

微信图片_20220904201951.png

2.新增任务

微信图片_20220904202019.png

3.执行任务

微信图片_20220904202036.png

注:测试选择执行一次即可,如需项目保持运行,选择启动

4.查看运行结果

微信图片_20220904202056.png

到此,XXL-JOB与SpringBoot的简单整合入门教程就完成了,感谢您的查阅!

相关文章
|
7月前
|
消息中间件 运维 Kafka
直播预告|Kafka+Flink双引擎实战:手把手带你搭建分布式实时分析平台!
在数字化转型中,企业亟需从海量数据中快速提取价值并转化为业务增长动力。5月15日19:00-21:00,阿里云三位技术专家将讲解Kafka与Flink的强强联合方案,帮助企业零门槛构建分布式实时分析平台。此组合广泛应用于实时风控、用户行为追踪等场景,具备高吞吐、弹性扩缩容及亚秒级响应优势。直播适合初学者、开发者和数据工程师,参与还有机会领取定制好礼!扫描海报二维码或点击链接预约直播:[https://developer.aliyun.com/live/255088](https://developer.aliyun.com/live/255088)
565 35
直播预告|Kafka+Flink双引擎实战:手把手带你搭建分布式实时分析平台!
|
7月前
|
消息中间件 运维 Kafka
直播预告|Kafka+Flink 双引擎实战:手把手带你搭建分布式实时分析平台!
直播预告|Kafka+Flink 双引擎实战:手把手带你搭建分布式实时分析平台!
235 12
|
3月前
|
消息中间件 监控 Java
Apache Kafka 分布式流处理平台技术详解与实践指南
本文档全面介绍 Apache Kafka 分布式流处理平台的核心概念、架构设计和实践应用。作为高吞吐量、低延迟的分布式消息系统,Kafka 已成为现代数据管道和流处理应用的事实标准。本文将深入探讨其生产者-消费者模型、主题分区机制、副本复制、流处理API等核心机制,帮助开发者构建可靠、可扩展的实时数据流处理系统。
404 4
|
10月前
|
Java 关系型数据库 MySQL
新一代 Cron-Job分布式任务调度平台 部署指南
简单易用、超低延迟,支持用户权限管理、多语言客户端和多租户接入的分布式任务调度平台。 支持任何Cron表达式的任务调度,支持常用的分片和随机策略;支持失败丢弃、失败重试的失败策略;支持动态任务参数。
351 100
|
10月前
|
Java 调度 Maven
新一代 Cron-Job 分布式任务调度平台 正式发布!
简单易用、超低延迟,支持用户权限管理、多语言客户端和多租户接入的分布式任务调度平台。 支持任何Cron表达式的任务调度,支持常用的分片和随机策略;支持失败丢弃、失败重试的失败策略;支持动态任务参数。
396 96
|
6月前
|
运维 监控 Linux
WGCLOUD运维平台的分布式计划任务功能介绍
WGCLOUD是一款免费开源的运维监控平台,支持主机与服务器性能监控,具备实时告警和自愈功能。本文重点介绍其计划任务功能模块,可统一管理Linux和Windows主机的定时任务。相比手动配置crontab或Windows任务计划,WGCLOUD提供直观界面,通过添加cron表达式、执行指令或脚本并选择主机,即可轻松完成任务设置,大幅提升多主机任务管理效率。
|
8月前
|
SQL 监控 Go
新一代 Cron-Job分布式调度平台,v1.0.8版本发布,支持Go执行器SDK!
现代化的Cron-Job分布式任务调度平台,支持Go语言执行器SDK,多项核心优势优于其他调度平台。
179 8
|
9月前
|
数据采集 监控 数据可视化
11.7K Star!这个分布式爬虫管理平台让多语言协作如此简单!
分布式爬虫管理平台Crawlab,支持任何编程语言和框架的爬虫管理,提供可视化界面、任务调度、日志监控等企业级功能,让爬虫开发管理效率提升300%!
386 1
|
9月前
|
测试技术 调度
新一代 Cron-Job分布式调度平台,v1.0.5版本发布!
增加标签路由能力和多项功能优化!其中Tag标签路由的功能,测试环境多迭代场景下,可通过给任务配置Tag标签,实现任务路由到不同的执行器上。
133 0
|
消息中间件 监控 数据可视化
Apache Airflow 开源最顶级的分布式工作流平台
Apache Airflow 是一个用于创作、调度和监控工作流的平台,通过将工作流定义为代码,实现更好的可维护性和协作性。Airflow 使用有向无环图(DAG)定义任务,支持动态生成、扩展和优雅的管道设计。其丰富的命令行工具和用户界面使得任务管理和监控更加便捷。适用于静态和缓慢变化的工作流,常用于数据处理。
Apache Airflow 开源最顶级的分布式工作流平台

热门文章

最新文章