Python数据分析与展示:Series类型简单操作-8

简介: Python数据分析与展示:Series类型简单操作-8

Pandas是Python第三方库,提供高性能易用数据类型和分析工具


官网文档:http://pandas.pydata.org/pandas-docs/stable/10min.html


引入:


import pandas as pd

1

Pandas基于NumPy实现,常与NumPy和Matplotlib一同使用


两个数据类型:Series, DataFrame


基于上述数据类型的各类操作


基本操作

运算操作

特征类操作

关联类操作

image.png

Series类型

Series类型由一组数据及与之相关的数据索引组成


自动索引

自定义索引

Series是一维带“标签”数组

结构:data_a index_0

Series基本操作类似ndarray和字典,根据索引对齐


Series类型创建:

Python列表,index与列表元素个数一致

标量值,index表达Series类型的尺寸

Python字典,键值对中的“键”是索引,index从字典中进行选择操作

ndarray,索引和数据都可以通过ndarray类型创建

其他函数,range()函数等

Series类型基本操作

Series类型包括index和values两部分


.index 获得索引

.values 获得数据

Series类型的操作类似ndarray类型


索引方法相同,采用[]

NumPy中运算和操作可用于Series类型

可以通过自定义索引的列表进行切片

可以通过自动索引进行切片,如果存在自定义索引,则一同被切片

Series类型的操作类似Python字典类型:


通过自定义索引访问

保留字in操作

使用.get()方法

Series类型对齐操作

Series+ Series

Series类型在运算中会自动对齐不同索引的数据


Series类型name属性

Series对象和索引都可以有一个名字,存储在属性.name中


Series类型的修改

对获取的值进行赋值


代码示例

# -*- coding: utf-8 -*-
# @File    : series_demo.py
# @Date    : 2018-05-19
import pandas as pd
# 创建Series对象
d = pd.Series(range(5))
print(d)
"""
0    0
1    1
2    2
3    3
4    4
dtype: int64
"""
# 计算前N项和
print(d.cumsum())
"""
0     0
1     1
2     3
3     6
4    10
dtype: int64
"""
# 自动索引
d = pd.Series([1, 2, 3, 4, 5])
print(d)
"""
0    1
1    2
2    3
3    4
4    5
dtype: int64
"""
# 自定义索引
d = pd.Series([1, 2, 3, 4, 5], index=["a", "b", "c", "d", "e"])
print(d)
"""
a    1
b    2
c    3
d    4
e    5
dtype: int64
"""
# 从标量值创建, 不能省略index
s = pd.Series(20, index=["a", "b", "c"])
print(s)
"""
a    20
b    20
c    20
dtype: int64
"""
# 从字典类型创建
s = pd.Series({"a": 1, "b": 2, "c": 3})
print(s)
"""
a    1
b    2
c    3
dtype: int64
"""
# index从字典中进行选择操作
s = pd.Series({"a": 1, "b": 2, "c": 3}, index=["c", "a", "b", "d"])
print(s)
"""
c    3.0
a    1.0
b    2.0
d    NaN
dtype: float64
"""
# 从ndarray类型创建
import numpy as np
s = pd.Series(np.arange(5))
print(s)
"""
0    0
1    1
2    2
3    3
4    4
dtype: int32
"""
# 指定索引
s = pd.Series(np.arange(5), index=np.arange(9, 4, -1))
print(s)
"""
9    0
8    1
7    2
6    3
5    4
dtype: int32
"""
# Series基本操作
s = pd.Series([1, 2, 3, 4, 5], index=["a", "b", "c", "d", "e"])
# 获得索引
print(s.index)
# Index(['a', 'b', 'c', 'd', 'e'], dtype='object')
# 获得值
print(s.values)
# [1 2 3 4 5]
# 自动索引和自定义索引并存 但不能混
print(s[0])
# 1
print(s["a"])
# 1
# 切片操作
print(s[["a", "b"]])
"""
a    1
b    2
dtype: int64
"""
# 类似ndarray类型
print(s[:3])
"""
a    1
b    2
c    3
dtype: int64
"""
print(s[s>s.median()])
"""
d    4
e    5
dtype: int64
"""
print(np.exp(s))
"""
a      2.718282
b      7.389056
c     20.085537
d     54.598150
e    148.413159
dtype: float64
"""
# 类似Python字典类型
print("b" in s)
# True
print(s.get("g", 100))
# 100
# Series类型对齐操作
a = pd.Series([1, 2, 3], index=["a", "b", "c"])
b = pd.Series([5, 6, 7, 8], index=["a", "b", "d", "e"])
print(a+b)
"""
a    6.0
b    8.0
c    NaN
d    NaN
e    NaN
dtype: float64
"""
# Series类型name属性
s = pd.Series([1, 2, 3, 4, 5], index=["a", "b", "c", "d", "e"])
s.name="Series"
s.index.name = "索引"
print(s)
"""
索引
a    1
b    2
c    3
d    4
e    5
Name: Series, dtype: int64
"""
# Series修改
s = pd.Series([1, 2, 3, 4, 5], index=["a", "b", "c", "d", "e"])
s[0] = 666
print(s)
"""
0    666
1      2
2      3
3      4
4      5
dtype: int64
"""
s["a", "b"] = 20
print(s)
"""
a    20
b    20
c     3
d     4
e     5
dtype: int64
"""
# Series删除元素
s = pd.Series([1, 2, 3, 4, 5, 6], index=["a", "b", "c", "d", "e", "f"])
print(s)
"""
a    1
b    2
c    3
d    4
e    5
f    6
dtype: int64
"""
s1 = s.drop(["a", "b"])
print(s1)
"""
c    3
d    4
e    5
f    6
dtype: int64
"""
相关文章
|
2月前
|
Java 数据挖掘 数据处理
(Pandas)Python做数据处理必选框架之一!(一):介绍Pandas中的两个数据结构;刨析Series:如何访问数据;数据去重、取众数、总和、标准差、方差、平均值等;判断缺失值、获取索引...
Pandas 是一个开源的数据分析和数据处理库,它是基于 Python 编程语言的。 Pandas 提供了易于使用的数据结构和数据分析工具,特别适用于处理结构化数据,如表格型数据(类似于Excel表格)。 Pandas 是数据科学和分析领域中常用的工具之一,它使得用户能够轻松地从各种数据源中导入数据,并对数据进行高效的操作和分析。 Pandas 主要引入了两种新的数据结构:Series 和 DataFrame。
458 0
|
机器学习/深度学习 数据采集 数据可视化
基于爬虫和机器学习的招聘数据分析与可视化系统,python django框架,前端bootstrap,机器学习有八种带有可视化大屏和后台
本文介绍了一个基于Python Django框架和Bootstrap前端技术,集成了机器学习算法和数据可视化的招聘数据分析与可视化系统,该系统通过爬虫技术获取职位信息,并使用多种机器学习模型进行薪资预测、职位匹配和趋势分析,提供了一个直观的可视化大屏和后台管理系统,以优化招聘策略并提升决策质量。
866 4
|
数据采集 数据可视化 数据挖掘
数据分析大神养成记:Python+Pandas+Matplotlib助你飞跃!
在数字化时代,数据分析至关重要,而Python凭借其强大的数据处理能力和丰富的库支持,已成为该领域的首选工具。Python作为基石,提供简洁语法和全面功能,适用于从数据预处理到高级分析的各种任务。Pandas库则像是神兵利器,其DataFrame结构让表格型数据的处理变得简单高效,支持数据的增删改查及复杂变换。配合Matplotlib这一数据可视化的魔法棒,能以直观图表展现数据分析结果。掌握这三大神器,你也能成为数据分析领域的高手!
258 2
|
机器学习/深度学习 算法 数据挖掘
2023 年第二届钉钉杯大学生大数据挑战赛初赛 初赛 A:智能手机用户监测数据分析 问题二分类与回归问题Python代码分析
本文介绍了2023年第二届钉钉杯大学生大数据挑战赛初赛A题的Python代码分析,涉及智能手机用户监测数据分析中的聚类分析和APP使用情况的分类与回归问题。
365 0
2023 年第二届钉钉杯大学生大数据挑战赛初赛 初赛 A:智能手机用户监测数据分析 问题二分类与回归问题Python代码分析
|
机器学习/深度学习 算法 数据挖掘
数据分析的 10 个最佳 Python 库
数据分析的 10 个最佳 Python 库
1189 4
数据分析的 10 个最佳 Python 库
|
机器学习/深度学习 数据采集 数据可视化
数据分析之旅:用Python探索世界
数据分析之旅:用Python探索世界
152 3
|
SQL 数据挖掘 Python
数据分析编程:SQL,Python or SPL?
数据分析编程用什么,SQL、python or SPL?话不多说,直接上代码,对比明显,明眼人一看就明了:本案例涵盖五个数据分析任务:1) 计算用户会话次数;2) 球员连续得分分析;3) 连续三天活跃用户数统计;4) 新用户次日留存率计算;5) 股价涨跌幅分析。每个任务基于相应数据表进行处理和计算。
|
数据采集 数据可视化 数据挖掘
数据分析大神养成记:Python+Pandas+Matplotlib助你飞跃!
【9月更文挑战第2天】数据分析大神养成记:Python+Pandas+Matplotlib助你飞跃!
168 5
|
机器学习/深度学习 数据采集 数据挖掘
【2023年第十一届泰迪杯数据挖掘挑战赛】B题:产品订单的数据分析与需求预测 建模及python代码详解 问题二
本文提供了第十一届泰迪杯数据挖掘挑战赛B题问题二的详细解题步骤,包括时间序列预测模型的建立、多元输入时间预测问题的分析、时间序列预测的建模步骤、改进模型的方法,以及使用Python进行SARIMA模型拟合和预测的具体实现过程。
350 1
|
数据采集 机器学习/深度学习 搜索推荐
【2023钉钉杯复赛】A题 智能手机用户监测数据分析 Python代码分析
本文介绍了2023钉钉杯复赛A题的智能手机用户监测数据分析,包括数据预处理、特征提取、推荐模型建立与评价的Python代码实现,旨在通过用户使用记录预测APP使用情况并建立推荐系统。
311 0
【2023钉钉杯复赛】A题 智能手机用户监测数据分析 Python代码分析

推荐镜像

更多