(1)sparkstreaming结合sparksql读取socket实时数据流

简介: Spark Streaming是构建在Spark Core的RDD基础之上的,与此同时Spark Streaming引入了一个新的概念:DStream(Discretized Stream,离散化数据流),表示连续不断的数据流。DStream抽象是Spark Streaming的流处理模型,在内部实现上,Spark Streaming会对输入数据按照时间间隔(如1秒)分段,每一段数据转换为Spark中的RDD,这些分段就是Dstream,并且对DStream的操作都最终转变为对相应的RDD的操作。Spark SQL 是 Spark 用于结构化数据(structured data)处理的 Sp

Spark Streaming是构建在Spark Core的RDD基础之上的,与此同时Spark Streaming引入了一个新的概念:DStream(Discretized Stream,离散化数据流),表示连续不断的数据流。DStream抽象是Spark Streaming的流处理模型,在内部实现上,Spark Streaming会对输入数据按照时间间隔(如1秒)分段,每一段数据转换为Spark中的RDD,这些分段就是Dstream,并且对DStream的操作都最终转变为对相应的RDD的操作。
Spark SQL 是 Spark 用于结构化数据(structured data)处理的 Spark 模块。Spark SQL 的前身是Shark,Shark是基于 Hive 所开发的工具,它修改了下图所示的右下角的内存管理、物理计划、执行三个模块,并使之能运行在 Spark 引擎上。
image.png
(1)pom依赖:

<dependencies>
    <dependency>
        <groupId>org.apache.spark</groupId>
        <artifactId>spark-core_${scala.version}</artifactId>
        <version>${spark.version}</version>
    </dependency>
    <dependency>
        <groupId>org.apache.spark</groupId>
        <artifactId>spark-streaming_${scala.version}</artifactId>
        <version>${spark.version}</version>
    </dependency>
    <dependency>
        <groupId>org.apache.spark</groupId>
        <artifactId>spark-sql_${scala.version}</artifactId>
        <version>${spark.version}</version>
    </dependency>
    <dependency>
        <groupId>org.scala-lang</groupId>
        <artifactId>scala-library</artifactId>
        <version>2.11.11</version>
    </dependency>
    <dependency>
        <groupId>org.apache.spark</groupId>
        <artifactId>spark-streaming-kafka-0-10_2.11</artifactId>
        <version>2.3.1</version>
    </dependency>
    <dependency>
        <groupId>org.apache.kafka</groupId>
        <artifactId>kafka-clients</artifactId>
        <version>2.3.1</version>
    </dependency>
    <dependency>
        <groupId>com.alibaba</groupId>
        <artifactId>fastjson</artifactId>
        <version>1.2.66</version>
    </dependency>
</dependencies>

(2)定义消息对象

package com.pojo;

import java.io.Serializable;
import java.util.Date;

/**
 * Created by lj on 2022-07-13.
 */
public class WaterSensor implements Serializable {
    public String id;
    public long ts;
    public int vc;

    public WaterSensor(){

    }

    public WaterSensor(String id,long ts,int vc){
        this.id = id;
        this.ts = ts;
        this.vc = vc;
    }

    public int getVc() {
        return vc;
    }

    public void setVc(int vc) {
        this.vc = vc;
    }

    public String getId() {
        return id;
    }

    public void setId(String id) {
        this.id = id;
    }

    public long getTs() {
        return ts;
    }

    public void setTs(long ts) {
        this.ts = ts;
    }
}

(3)构建数据生产者

package com.producers;

import java.io.BufferedWriter;
import java.io.IOException;
import java.io.OutputStreamWriter;
import java.net.ServerSocket;
import java.net.Socket;
import java.util.Random;

/**
 * Created by lj on 2022-07-12.
 */
public class Socket_Producer {
    public static void main(String[] args) throws IOException {

        try {
            ServerSocket ss = new ServerSocket(9999);
            System.out.println("启动 server ....");
            Socket s = ss.accept();
            BufferedWriter bw = new BufferedWriter(new OutputStreamWriter(s.getOutputStream()));
            String response = "java,1,2";

            //每 2s 发送一次消息
            int i = 0;
            Random r=new Random();   //不传入种子
            String[] lang = {"flink","spark","hadoop","hive","hbase","impala","presto","superset","nbi"};

            while(true){
                response= lang[r.nextInt(lang.length)]+ i + "," + i + "," + i+"\n";
                System.out.println(response);
                try{
                    bw.write(response);
                    bw.flush();
                    i++;
                }catch (Exception ex){
                    System.out.println(ex.getMessage());
                }
                Thread.sleep(1000 * 30);
            }
        } catch (IOException | InterruptedException e) {
            e.printStackTrace();
        }
    }
}

(4)通过sparkstreaming接入socket数据源,sparksql计算结果打印输出:

package com.examples;

import com.pojo.WaterSensor;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.api.java.function.VoidFunction2;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.SparkSession;
import org.apache.spark.streaming.Durations;
import org.apache.spark.streaming.Time;
import org.apache.spark.streaming.api.java.JavaReceiverInputDStream;
import org.apache.spark.streaming.api.java.JavaStreamingContext;

/**
 * Created by lj on 2022-07-16.
 */
public class SparkSql_Socket1 {
    private static String appName = "spark.streaming.demo";
    private static String master = "local[*]";
    private static String host = "localhost";
    private static int port = 9999;

    public static void main(String[] args) {
        //初始化sparkConf
        SparkConf sparkConf = new SparkConf().setMaster(master).setAppName(appName);

        //获得JavaStreamingContext
        JavaStreamingContext ssc = new JavaStreamingContext(sparkConf, Durations.minutes(1));

        //从socket源获取数据
        JavaReceiverInputDStream<String> lines = ssc.socketTextStream(host, port);

        //将 DStream 转换成 DataFrame 并且运行sql查询
        lines.foreachRDD(new VoidFunction2<JavaRDD<String>, Time>() {
            @Override
            public void call(JavaRDD<String> rdd, Time time) {
                SparkSession spark = JavaSparkSessionSingleton.getInstance(rdd.context().getConf());

                //通过反射将RDD转换为DataFrame
                JavaRDD<WaterSensor> rowRDD = rdd.map(new Function<String, WaterSensor>() {
                    @Override
                    public WaterSensor call(String line) {
                        String[] cols = line.split(",");
                        WaterSensor waterSensor = new WaterSensor(cols[0],Long.parseLong(cols[1]),Integer.parseInt(cols[2]));
                        return waterSensor;
                    }
                });

                Dataset<Row> dataFrame = spark.createDataFrame(rowRDD, WaterSensor.class);
                // 创建临时表
                dataFrame.createOrReplaceTempView("log");
                Dataset<Row> result = spark.sql("select * from log");
                System.out.println("========= " + time + "=========");
                //输出前20条数据
                result.show();
            }
        });

        //开始作业
        ssc.start();
        try {
            ssc.awaitTermination();
        } catch (Exception e) {
            e.printStackTrace();
        } finally {
            ssc.close();
        }
    }
}

(5)效果演示:
image.png

代码中定义的是1分钟的批处理间隔,所以每1分钟会触发一次计算:
image.png

相关文章
Socket不断报错!!(记得\n要加上,以及Socket上流通的是字节!还有Socket需要借助数据流来完成数据传递工作,注意输入流的导包不要导入错误,是io流包)
Socket不断报错!!(记得\n要加上,以及Socket上流通的是字节!还有Socket需要借助数据流来完成数据传递工作,注意输入流的导包不要导入错误,是io流包)
215 0
Socket不断报错!!(记得\n要加上,以及Socket上流通的是字节!还有Socket需要借助数据流来完成数据传递工作,注意输入流的导包不要导入错误,是io流包)
|
9月前
|
Java
Java Socket编程与多线程:提升客户端-服务器通信的并发性能
【6月更文挑战第21天】Java网络编程中,Socket结合多线程提升并发性能,服务器对每个客户端连接启动新线程处理,如示例所示,实现每个客户端的独立操作。多线程利用多核处理器能力,避免串行等待,提升响应速度。防止死锁需减少共享资源,统一锁定顺序,使用超时和重试策略。使用synchronized、ReentrantLock等维持数据一致性。多线程带来性能提升的同时,也伴随复杂性和挑战。
145 0
|
9月前
|
安全 Java 网络安全
Java Socket编程教程:构建安全可靠的客户端-服务器通信
【6月更文挑战第21天】构建安全的Java Socket通信涉及SSL/TLS加密、异常处理和重连策略。示例中,`SecureServer`使用SSLServerSocketFactory创建加密连接,而`ReliableClient`展示异常捕获与自动重连。理解安全意识,如防数据截获和中间人攻击,是首要步骤。通过良好的编程实践,确保网络应用在复杂环境中稳定且安全。
144 0
|
5月前
|
网络协议 测试技术 网络安全
Python编程-Socket网络编程
Python编程-Socket网络编程
48 0
|
8月前
|
网络协议 开发者 Python
深度探索Python Socket编程:从理论到实践,进阶篇带你领略网络编程的魅力!
【7月更文挑战第25天】在网络编程中, Python Socket编程因灵活性强而广受青睐。本文采用问答形式深入探讨其进阶技巧。**问题一**: Socket编程基于TCP/IP,通过创建Socket对象实现通信,支持客户端和服务器间的数据交换。**问题二**: 提升并发处理能力的方法包括多线程(适用于I/O密集型任务)、多进程(绕过GIL限制)和异步IO(asyncio)。**问题三**: 提供了一个使用asyncio库实现的异步Socket服务器示例,展示如何接收及响应客户端消息。通过这些内容,希望能激发读者对网络编程的兴趣并引导进一步探索。
92 4
|
8月前
|
开发者 Python
Python Socket编程:不只是基础,更有进阶秘籍,让你的网络应用飞起来!
【7月更文挑战第25天】在网络应用蓬勃发展的数字时代,Python凭借其简洁的语法和强大的库支持成为开发高效应用的首选。本文通过实时聊天室案例,介绍了Python Socket编程的基础与进阶技巧,包括服务器与客户端的建立、数据交换等基础篇内容,以及使用多线程和异步IO提升性能的进阶篇。基础示例展示了服务器端监听连接请求、接收转发消息,客户端连接服务器并收发消息的过程。进阶部分讨论了如何利用Python的`threading`模块和`asyncio`库来处理多客户端连接,提高应用的并发处理能力和响应速度。掌握这些技能,能使开发者在网络编程领域更加游刃有余,构建出高性能的应用程序。
48 3
|
8月前
|
网络协议 Python
网络世界的建筑师:Python Socket编程基础与进阶,构建你的网络帝国!
【7月更文挑战第26天】在网络的数字宇宙中,Python Socket编程是开启网络世界大门的钥匙。本指南将引领你从基础到实战,成为网络世界的建筑师。
87 2
|
8月前
|
网络协议 程序员 视频直播
|
8月前
|
消息中间件 网络协议 网络安全
Python Socket编程:打造你的专属网络通道,基础篇与进阶篇一网打尽!
【7月更文挑战第26天】在网络编程领域,Python以简洁语法和强大库支持成为构建应用的首选。Socket编程为核心,实现计算机间的数据交换。
94 1
|
8月前
|
网络协议 安全 Java
Java中的网络编程:Socket编程详解
Java中的网络编程:Socket编程详解