Python编程:aiohttp和requests网络io性能比较

简介: 使用4 种方式 对网络发起10次请求,进行10次耗时测试

使用4 种方式 对网络发起10次请求,进行10次耗时测试


以下代码在 Python3.6.5 下测试

测试代码

# -*- coding: utf-8 -*-

import asyncio
import time

import aiohttp
import requests

urls = ["https://www.baidu.com/"] * 10


# 1、直接使用 requests
def requests_main():
    for url in urls:
        response = requests.get(url)
        html = response.text


# 2、使用 requests.session
def requests_session():
    with requests.session() as session:
        for url in urls:
            response = session.get(url)
            html = response.text


# 3、使用 aiohttp
async def aiohttp_main():
    for url in urls:
        async with aiohttp.ClientSession() as session:
            async with session.get(url) as response:
                html = await response.text()


# 4、 使用 aiohttp.session
async def aiohttp_session():
    async with aiohttp.ClientSession() as session:
        for url in urls:
            async with session.get(url) as response:
                html = await response.text()


if __name__ == '__main__':
    for i in range(10):
        start_time = time.time()
        # requests_main()
        # requests_session()

        # asyncio.get_event_loop().run_until_complete(aiohttp_main())
        asyncio.get_event_loop().run_until_complete(aiohttp_session())

        end_time = time.time()
        print("{:.3}".format(end_time - start_time))

    """
    输出结果:
    
    requests_main
    2.2, 3.69, 2.28, 2.14, 3.37, 2.25, 3.95, 2.97, 2.24, 3.61
    
    requests_session
    0.917, 0.719, 0.682, 0.814, 0.874, 1.66, 0.676, 0.672, 0.66, 0.824
    
    aiohttp_main
    3.1, 2.05, 2.12, 3.12, 1.97, 2.19, 3.38, 2.17, 2.44, 3.2 
    
    aiohttp_session
    1.63, 0.599, 0.656, 0.586, 0.603, 0.607, 0.948, 0.6, 1.54, 1.42 
    
    """

对输出的结果进行平均值计算

requests_main_list = [2.2, 3.69, 2.28, 2.14, 3.37, 2.25, 3.95, 2.97, 2.24, 3.61]

requests_session_list = [0.917, 0.719, 0.682, 0.814, 0.874, 1.66, 0.676, 0.672, 0.66, 0.824]
aiohttp_main_list = [3.1, 2.05, 2.12, 3.12, 1.97, 2.19, 3.38, 2.17, 2.44, 3.2]
aiohttp_session_list = [1.63, 0.599, 0.656, 0.586, 0.603, 0.607, 0.948, 0.6, 1.54, 1.42]

requests_main_avg = sum(requests_main_list) / len(requests_main_list)
requests_session_avg = sum(requests_session_list) / len(requests_session_list)
aiohttp_main_avg = sum(aiohttp_main_list) / len(aiohttp_main_list)
aiohttp_session_avg = sum(aiohttp_session_list) / len(aiohttp_session_list)

print(requests_main_avg)
print(requests_session_avg)
print(aiohttp_main_avg)
print(aiohttp_session_avg)

计算结果如下

6.png

所以,对一个网站请求,最好维护一个session,较少握手连接次数是很有必要的,就算是单线程请求,也能得到很好地细性能提升


            </div>
目录
相关文章
|
C语言
[字符串和内存函数]strcmp和strncmp以及memcmp的区别
[字符串和内存函数]strcmp和strncmp以及memcmp的区别
585 0
|
5月前
|
传感器 机器学习/深度学习 分布式计算
卡尔曼滤波的多传感器数据融合算法
卡尔曼滤波的多传感器数据融合算法
810 0
|
5月前
|
人工智能 开发框架 搜索推荐
AI Agent构建强大外部工具调用能力不足,MCP Server怎样应对?MCP Serve在企业级Agent系统中的关键意义
本文AI产品专家三桥君探讨了MCP Server在企业级AI Agent系统中的关键作用,通过标准化工具接口实现AI与外部服务的无缝集成。三桥君重点阐述了分布式系统中的会话管理、状态持久化等实践方案,强调MCP Server在降低AI决策风险、提升系统可靠性方面的企业价值,为AI产品经理提供了架构设计与优化策略的实践指导。
455 0
|
数据可视化 Android开发 开发者
安卓应用开发中的自定义View组件
【10月更文挑战第5天】在安卓应用开发中,自定义View组件是提升用户交互体验的利器。本篇将深入探讨如何从零开始创建自定义View,包括设计理念、实现步骤以及性能优化技巧,帮助开发者打造流畅且富有创意的用户界面。
367 0
|
人工智能 API 开发工具
ChatGPT 人工智能助理 Assistant
Assistants API 让你构建定制化的AI助手,通过指令引导助手运用模型、工具和知识回应查询。核心模块包括名称、指令、模型选择(如GPT-4)、工具(如Code Interpreter)及知识检索。需注意,免费账户限制较多,建议使用付费账户以获得完整体验。可通过界面操作或Python SDK实现助手创建、线程管理及信息交互等功能。相关资源包括官方文档和体验平台。
|
调度 开发者 Python
探索Python中的异步编程:从asyncio到Trio
在这个快节奏的技术世界里,Python的异步编程正变得越来越重要。本文将带你深入Python的异步编程世界,从asyncio的基础用法,到Trio的高级特性,我们将一探究竟。准备好,让我们一起揭开Python异步编程的神秘面纱。
|
算法 Java 程序员
解锁Python高效之道:并发与异步在IO与CPU密集型任务中的精准打击策略!
在数据驱动时代,高效处理大规模数据和高并发请求至关重要。Python凭借其优雅的语法和强大的库支持,成为开发者首选。本文将介绍Python中的并发与异步编程,涵盖并发与异步的基本概念、IO密集型任务的并发策略、CPU密集型任务的并发策略以及异步IO的应用。通过具体示例,展示如何使用`concurrent.futures`、`asyncio`和`multiprocessing`等库提升程序性能,帮助开发者构建高效、可扩展的应用程序。
552 0
|
机器学习/深度学习 自然语言处理 监控
深度学习之动态对抗策略
基于深度学习的动态对抗策略是为了应对不断变化的对抗环境而提出的一类方法,这些策略能够动态地调整和优化模型的防御机制,以提高深度学习模型在各种对抗攻击下的鲁棒性和安全性。
307 1
|
缓存 负载均衡 测试技术
掌握wrk压力测试工具的优化技巧与实践
掌握wrk压力测试工具的优化技巧与实践
345 1