Dijkstra(迪杰斯特拉算法)的实现(C,C++,Matlab)

简介: Dijkstra 算法(中文名:迪杰斯特拉算法)是由荷兰计算机科学家 Edsger Wybe Dijkstra 提出。该算法常用于路由算法或者作为其他图算法的一个子模块。举例来说,如果图中的顶点表示城市,而边上的权重表示城市间开车行经的距离,该算法可以用来找到两个城市之间的最短路径。二.算法描述💡算法思想设G=(V,E)是一个带权有向图,把图中顶点集合V分为两组,第一组为已求出最短路径的顶点集合(用S表示,初始时S中只有一个源点,以后每求得一条最短路径 , 就将加入到集合S中,直到全部顶点都加入到S中,算法就结束了),第二组为其余未确定最短路径的顶点集合(用U表示),按最短路径的的递增

Dijkstra

一.算法背景

Dijkstra 算法(中文名:迪杰斯特拉算法)是由荷兰计算机科学家 Edsger Wybe Dijkstra 提出。该算法常用于路由算法或者作为其他图算法的一个子模块。举例来说,如果图中的顶点表示城市,而边上的权重表示城市间开车行经的距离,该算法可以用来找到两个城市之间的最短路径。

二.算法描述

💡算法思想

设G=(V,E)是一个带权有向图,把图中顶点集合V分为两组,第一组为已求出最短路径的顶点集合(用S表示,初始时S中只有一个源点,以后每求得一条最短路径 , 就将加入到集合S中,直到全部顶点都加入到S中,算法就结束了),

第二组为其余未确定最短路径的顶点集合(用U表示),按最短路径的的递增次序依次把第二组中的顶点加入S中。在加入的过程中,总保持从源点v到S中各个顶点的最短路径长度不大于从源点v到U中任何路径的长度。

此外,每个顶点对应一个距离,S中的顶点的距离就是从v到此顶点的最短路径长度,U中的顶点的距离,是从v到此顶点只包括S中的顶点为中间顶点的当前路径的最短长度。

算法步骤

a.初始时,只包括源点,即S = {v},v的距离为0。U包含除v以外的其他顶点,即:U ={其余顶点},若v与U中顶点u有边,则(u,v)为正常权值,若u不是v的出边邻接点,则(u,v)权值 ∞;

b…从U中选取一个距离v最小的顶点k,把k,加入S中(该选定的距离就是v到k的最短路径长度)。

c.以k为新考虑的中间点,修改U中各顶点的距离;若从源点v到顶点u的距离(经过顶点k)比原来距离(不经过顶点k)短,则修改顶点u的距离值,修改后的距离值的顶点k的距离加上边上的权。

d.重复步骤b和c直到所有顶点都包含在S中。

执行动画

网络异常,图片无法展示
|

三:时间复杂度

设图的边数为 m,顶点数为 n。

Dijkstra 算法最简单的实现方法是用一个数组来存储所有顶点的dis[] 时间复杂度为O(n^2)

对于边数少于n^{2}的稀疏图来说,我们可以用邻接表来更有效的实现该算法。同时需要将一个二叉堆或者斐波纳契堆用作优先队列来查找最小的顶点(Extract-Min)。当用到二叉堆的时候,算法所需的时间为{\displaystyle O((m+n)logn)},斐波纳契堆能稍微提高一些性能,让算法运行时间达到{\displaystyle O(m+nlogn)}。然而,使用斐波纳契堆进行编程,常常会由于算法常数过大而导致速度没有显著提高。

四.算法缺点

算法限制要求:无负权值

无法求出任意两点路径(求任意两点 为 弗洛伊德算法(floyd))

五.算法实例

给出一个无向图

网络异常,图片无法展示
|

用Dijkstra算法找出以A为起点的单源最短路径步骤如下:

网络异常,图片无法展示
|

六.代码实现\

以下为 C,C++,Matlab 语言的代码作为示例

C语言 例题:sdut 3562 Proxy (迪杰斯特拉+反向建树)

#include<stdio.h>
#include<string.h>
#define N 1002
#define Min(a,b) a>b?b:a
#define INF 1000000
int dis[N],bj[N];
int mp[N][N];int n;
void djsk(int v)
{
    int i,j,k,min;
    for(i=0;i<=n;i++)
    dis[i]=mp[v][i];//初始化dis数组 dis[i]=5代表从起始点到i点的最短距离 
     dis[v]=0;// v  代表起始节点 自己到自己为0 
     bj[v]=1;// 标记 已找到短路 
      for(i=0;i<=n;i++)// i 代表已经找到的最短路条数 
      {
        min=INF;k=0; 
        for(j=0;j<=n;j++)//从未找到最短路径元素中找一个路径最短的 
        if(!bj[j]&&dis[j]<min)min=dis[j],k=j;
        bj[k]=1;// 标记 已找到短路 
         for(j=0;j<=n+1;j++)//用但前最短路节点更新未找到最短路的节点 
         if(!bj[j]&&dis[j]>(dis[k]+mp[k][j]))dis[j]=dis[k]+mp[k][j];
      }
}

C语言_优化(队列) 例题: sdut 3562 Proxy迪杰斯特拉+反向建树

#include<stdio.h>
#include<string.h>
#define N 1002
#define Min(a,b) a>b?b:a
#define INF 1000000
int dis[N],s[2][N];
int mp[N][N];int n;
void djsk(int v){
    int i,j,k,min,q=0,d=0,c=0;
    for(i=0;i<=n;i++)
  s[c][q++]=i,dis[i]=mp[v][i];//初始化dis数组 dis[i]=5代表从起始点到i点的最短距离 
     dis[v]=0;// v  代表起始节点 自己到自己为0 
      while(q)//没有未找到最短路的元素
      {
        min=INF;k=-1; 
        for(j=0;j<q;j++)//从未找到最短路径元素中找一个路径最短的 
        if(dis[s[c%2][j]]<min)
        { min=dis[s[c%2][j]];
        if(k!=-1)s[(c+1)%2][d++]=k;
           k=s[c%2][j];
        }
         else s[(c+1)%2][d++]=s[c%2][j];
         if(q==d)break;//寻找无改变 则未联通
         for(j=0;j<d;j++)//用但前最短路节点更新未找到最短路的节点 
         if(dis[s[(c+1)%2][j]]>(dis[k]+mp[k][s[(c+1)%2][j]]))dis[s[(c+1)%2][j]]=dis[k]+mp[k][s[(c+1)%2][j]];
         c=(c+1)%2;q=d;d=0;//交换层次
      }
}

C++语言

const int  INT = 32767;
const int MAX = 10;
int dis[MAX];
int path[MAX];
int A[MAX][MAX];
void Dijk(int v){
    bool S[MAX];                                  // 判断是否已存入该点到S集合中
      int n=MAX;
    for(int i=1; i<=n; ++i)
    {
        dis[i] = A[v][i];
        S[i] = false;                                // 初始化
          path[i] = v;
     }
     dis[v] = 0; S[v] = true;   
    for(int i=2; i<=n; i++){
         int mindist = INT;
         int u = v;                               // 找出当前未使用的点j的dist[j]最小值
         for(int j=1; j<=n; ++j)
            if((!S[j]) && dis[j]<mindist)
            {
                  u = j;                             // u保存当前邻接点中距离最小的点的号码 
                  mindist = dis[j];
            }
         S[u] = true; 
         for(int j=1; j<=n; j++)
             if((!S[j]) && A[u][j]<INT)
             {
                 if(dis[u] + A[u][j] < dis[j])     //在通过新加入的u点路径找到离v点更短的路径  
                 {
                     dis[j] = dis[u] + A[u][j];    //更新dist 
                     path[j] = u;                    //记录前驱顶点 
                  }
              }
     }
}

Matlab 语言

%迪杰斯特拉(单源)
%     最短距离 ,路径    距离矩阵 起始点 结束点
 function [res,index] = Djsk(mp,stat,ends)
     n=size(mp,1);
     %初始化
     bj=zeros(n,1); %标记初始化
     dis=mp(stat,:); %各点最短路距离初始化   
     path=ones(n,1),path=path.*stat;%各点最短路路径初始化 
     dis(stat)=0;bj(stat)=1;
   for i=1:n 
     min=Inf; k=1;%局部初始化
      for j=1:n %从未找到最短路径点集合中找一个路径最短的点
       if (bj(j)~=1)&&(dis(j)<min),min=dis(j);k=j;end
      end
       bj(k)=1;%标记已找到的点的最短路径
       for j=1:n %用但前最短路节点更新未找到最短路的节点(同时更新各点路径的前一个点,即父节点) 
           if (bj(j)~=1)&&(dis(j)>(dis(k)+mp(k,j))), dis(j)=dis(k)+mp(k,j);path(j)=k;end
       end
  end
%对要求最短路径进行处理   
tem=ends;index(1)=ends;i=2;
while path(tem)~=stat
    index(i)=path(tem);
    tem=path(tem);
    i=i+1;
end
index(i)=stat;index=index(length(index):-1:1);res=dis(ends);
end
目录
相关文章
|
15天前
|
算法 数据安全/隐私保护 计算机视觉
基于Retinex算法的图像去雾matlab仿真
本项目展示了基于Retinex算法的图像去雾技术。完整程序运行效果无水印,使用Matlab2022a开发。核心代码包含详细中文注释和操作步骤视频。Retinex理论由Edwin Land提出,旨在分离图像的光照和反射分量,增强图像对比度、颜色和细节,尤其在雾天条件下表现优异,有效解决图像去雾问题。
|
15天前
|
算法 数据可视化 安全
基于DWA优化算法的机器人路径规划matlab仿真
本项目基于DWA优化算法实现机器人路径规划的MATLAB仿真,适用于动态环境下的自主导航。使用MATLAB2022A版本运行,展示路径规划和预测结果。核心代码通过散点图和轨迹图可视化路径点及预测路径。DWA算法通过定义速度空间、采样候选动作并评估其优劣(目标方向性、障碍物距离、速度一致性),实时调整机器人运动参数,确保安全避障并接近目标。
110 68
|
25天前
|
算法 数据安全/隐私保护
室内障碍物射线追踪算法matlab模拟仿真
### 简介 本项目展示了室内障碍物射线追踪算法在无线通信中的应用。通过Matlab 2022a实现,包含完整程序运行效果(无水印),支持增加发射点和室内墙壁设置。核心代码配有详细中文注释及操作视频。该算法基于几何光学原理,模拟信号在复杂室内环境中的传播路径与强度,涵盖场景建模、射线发射、传播及接收点场强计算等步骤,为无线网络规划提供重要依据。
|
26天前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
18天前
|
负载均衡 算法 安全
探秘:基于 C++ 的局域网电脑控制软件自适应指令分发算法
在现代企业信息化架构中,局域网电脑控制软件如同“指挥官”,通过自适应指令分发算法动态调整指令发送节奏与数据量,确保不同性能的终端设备高效运行。基于C++语言,利用套接字实现稳定连接和线程同步管理,结合实时状态反馈,优化指令分发策略,提升整体管控效率,保障网络稳定,助力数字化办公。
47 19
|
26天前
|
算法
基于龙格库塔算法的锅炉单相受热管建模与matlab数值仿真
本设计基于龙格库塔算法对锅炉单相受热管进行建模与MATLAB数值仿真,简化为喷水减温器和末级过热器组合,考虑均匀传热及静态烟气处理。使用MATLAB2022A版本运行,展示自编与内置四阶龙格库塔法的精度对比及误差分析。模型涉及热传递和流体动力学原理,适用于优化锅炉效率。
|
24天前
|
移动开发 算法 计算机视觉
基于分块贝叶斯非局部均值优化(OBNLM)的图像去噪算法matlab仿真
本项目基于分块贝叶斯非局部均值优化(OBNLM)算法实现图像去噪,使用MATLAB2022A进行仿真。通过调整块大小和窗口大小等参数,研究其对去噪效果的影响。OBNLM结合了经典NLM算法与贝叶斯统计理论,利用块匹配和概率模型优化相似块的加权融合,提高去噪效率和保真度。实验展示了不同参数设置下的去噪结果,验证了算法的有效性。
|
23天前
|
算法 决策智能
基于SA模拟退火优化算法的TSP问题求解matlab仿真,并对比ACO蚁群优化算法
本项目基于MATLAB2022A,使用模拟退火(SA)和蚁群优化(ACO)算法求解旅行商问题(TSP),对比两者的仿真时间、收敛曲线及最短路径长度。SA源于金属退火过程,允许暂时接受较差解以跳出局部最优;ACO模仿蚂蚁信息素机制,通过正反馈发现最优路径。结果显示SA全局探索能力强,ACO在路径优化类问题中表现优异。
|
23天前
|
存储 算法 测试技术
【C++数据结构——树】二叉树的遍历算法(头歌教学实验平台习题) 【合集】
本任务旨在实现二叉树的遍历,包括先序、中序、后序和层次遍历。首先介绍了二叉树的基本概念与结构定义,并通过C++代码示例展示了如何定义二叉树节点及构建二叉树。接着详细讲解了四种遍历方法的递归实现逻辑,以及层次遍历中队列的应用。最后提供了测试用例和预期输出,确保代码正确性。通过这些内容,帮助读者理解并掌握二叉树遍历的核心思想与实现技巧。
41 2
|
2月前
|
机器学习/深度学习 算法
基于遗传优化的双BP神经网络金融序列预测算法matlab仿真
本项目基于遗传优化的双BP神经网络实现金融序列预测,使用MATLAB2022A进行仿真。算法通过两个初始学习率不同的BP神经网络(e1, e2)协同工作,结合遗传算法优化,提高预测精度。实验展示了三个算法的误差对比结果,验证了该方法的有效性。