Python编程:threading多线程

简介: Python编程:threading多线程

直接调用

import threading
import time
def run(n):
    print("task:", n)
    time.sleep(2)
t1 = threading.Thread(target=run, args=("t1",))
t2 = threading.Thread(target=run, args=("t2",))
t3 = threading.Thread(target=run, args=("t3",))
t1.start()
t2.start()
t3.start()
"""
task: t1
task: t2
task: t3
"""

继承式调用

import threading
import time
class MyThread(threading.Thread):
    def __init__(self, n, sleep_time):
        super(MyThread, self).__init__()
        self.n = n
        self.sleep_time = sleep_time
    def run(self):  # 需要运行的代码
        print("task:", self.n)
        time.sleep(self.sleep_time)
        print("task done", self.n, threading.current_thread(), threading.active_count())
t1 = MyThread("t1", 2)
t2 = MyThread("t2", 3)
t3 = MyThread("t3", 4)
t1.start()
t2.start()
t3.start()
# 等待线程执行完毕继续主线程,阻塞
t1.join()  # wait()
t2.join()
t3.join()
print("...main...", threading.current_thread(), threading.active_count())  # 主线程
"""
task: t1
task: t2
task: t3
task done t1 <MyThread(Thread-1, started 7112)> 4
task done t2 <MyThread(Thread-2, started 5448)> 3
task done t3 <MyThread(Thread-3, started 4552)> 2
...main... <_MainThread(MainThread, started 2948)> 1
"""

多线程调用

# 主线程与子线程是并行的
import threading
import time
def run(n):
    print("task:", n)
    time.sleep(2)
    print("task done", n)
start_time = time.time()
threads = []  # 保存线程列表
for i in range(5):
    t = threading.Thread(target=run, args=("t%s"%i,))
    t.start()
    threads.append(t)
# 将所有线程阻塞
for t in threads:
    t.join()
end_time = time.time()
print("time:", end_time - start_time)
"""
task: t0
task: t1
task: t2
task: t3
task: t4
task done t4
task done t2
task done t3
task done t1
task done t0
time: 2.0103650093078613
"""

守护线程

import threading
import time
def run(n):
    print("task:", n)
    time.sleep(2)
    print("task done", n)
start_time = time.time()
threads = []  # 保存线程列表
for i in range(5):
    t = threading.Thread(target=run, args=("t%s"%i,))
    t.setDaemon(True)  # 设置为守护线程,主线程停止随之停止
    t.start()
    threads.append(t)
time.sleep(2)  # 等待部分线程执行完毕
end_time = time.time()
print("time:", end_time - start_time)
"""
task: t0
task: t1
task: t2
task: t3
task: t4
task done t2
task done t4
task done t3
task done t1
task done t0
time: 2.0087130069732666
"""

互斥锁

import threading
import time
num = 0
lock = threading.Lock()  # 实例化互斥锁
def run(n):
    global num
    lock.acquire()  # 申请锁
    time.sleep(2)
    num += 1
    lock.release()  # 释放锁
    print(num)
start_time = time.time()
threads = []  # 保存线程列表
for i in range(5):
    t = threading.Thread(target=run, args=("t%s"%i,))
    t.start()
    threads.append(t)
for thread in threads:
    thread.join()  # 等待部分线程执行完毕
end_time = time.time()
print("time:", end_time - start_time)
print("num:", num)
"""
1
2
3
4
5
time: 10.027688980102539
num: 5
"""

递归锁

import threading
import time
num = 0
lock = threading.RLock()  # 实例化递归锁,此处用普通互斥锁会卡死
def run1():
    print("run1_start")
    lock.acquire() # 第二级锁
    print("run1")
    lock.release()
def run2():
    lock.acquire()  # 第二级锁
    print("run2")
    lock.release()
def run():
    lock.acquire()  # 第一级锁
    print("run1_begin")
    run1()
    print("run2_begin")
    run2()
    print("run_end")
    lock.release()  # 释放锁
start_time = time.time()
t = threading.Thread(target=run)
t.start()
# t.join()  # 等待全部线程执行完毕
while threading.active_count() > 1:
    print(threading.current_thread())
end_time = time.time()
print("time:", end_time - start_time)
"""
run1_begin
<_MainThread(MainThread, started 22552)>
<_MainThread(MainThread, started 22552)>
<_MainThread(MainThread, started 22552)>
run1_start
<_MainThread(MainThread, started 22552)>
run1
run2_begin
run2
run_end
time: 0.0
"""

信号锁

import threading
import time
semaphore = threading.BoundedSemaphore(5)  # 设置信号量,最多允许5个线程同时运行
def run(n):
    semaphore.acquire()  # 信号锁
    time.sleep(1)
    print("run", n)
    semaphore.release()
start_time = time.time()
for i in range(10):
    t = threading.Thread(target=run, args=(i,))
    t.start()
# 等待全部线程执行完毕
while threading.active_count() != 1:
    pass
end_time = time.time()
print("time:", end_time - start_time)
"""
run 1
run 2
run 4
run 0
run 3
run 5
run 7
run 8
run 9
run 6
time: 2.061771869659424
"""
相关文章
|
2月前
|
Java
如何在Java中进行多线程编程
Java多线程编程常用方式包括:继承Thread类、实现Runnable接口、Callable接口(可返回结果)及使用线程池。推荐线程池以提升性能,避免频繁创建线程。结合同步与通信机制,可有效管理并发任务。
183 6
|
3月前
|
数据采集 机器学习/深度学习 人工智能
Python:现代编程的首选语言
Python:现代编程的首选语言
319 102
|
2月前
|
Python
Python编程:运算符详解
本文全面详解Python各类运算符,涵盖算术、比较、逻辑、赋值、位、身份、成员运算符及优先级规则,结合实例代码与运行结果,助你深入掌握Python运算符的使用方法与应用场景。
219 3
|
2月前
|
数据处理 Python
Python编程:类型转换与输入输出
本教程介绍Python中输入输出与类型转换的基础知识,涵盖input()和print()的使用,int()、float()等类型转换方法,并通过综合示例演示数据处理、错误处理及格式化输出,助你掌握核心编程技能。
483 3
|
2月前
|
并行计算 安全 计算机视觉
Python多进程编程:用multiprocessing突破GIL限制
Python中GIL限制多线程性能,尤其在CPU密集型任务中。`multiprocessing`模块通过创建独立进程,绕过GIL,实现真正的并行计算。它支持进程池、队列、管道、共享内存和同步机制,适用于科学计算、图像处理等场景。相比多线程,多进程更适合利用多核优势,虽有较高内存开销,但能显著提升性能。合理使用进程池与通信机制,可最大化效率。
300 3
|
2月前
|
Java 调度 数据库
Python threading模块:多线程编程的实战指南
本文深入讲解Python多线程编程,涵盖threading模块的核心用法:线程创建、生命周期、同步机制(锁、信号量、条件变量)、线程通信(队列)、守护线程与线程池应用。结合实战案例,如多线程下载器,帮助开发者提升程序并发性能,适用于I/O密集型任务处理。
312 0
|
5月前
|
Java API 微服务
为什么虚拟线程将改变Java并发编程?
为什么虚拟线程将改变Java并发编程?
320 83
|
3月前
|
算法 Java
Java多线程编程:实现线程间数据共享机制
以上就是Java中几种主要处理多线程序列化资源以及协调各自独立运行但需相互配合以完成任务threads 的技术手段与策略。正确应用上述技术将大大增强你程序稳定性与效率同时也降低bug出现率因此深刻理解每项技术背后理论至关重要.
282 16
|
7月前
|
机器学习/深度学习 消息中间件 存储
【高薪程序员必看】万字长文拆解Java并发编程!(9-2):并发工具-线程池
🌟 ​大家好,我是摘星!​ 🌟今天为大家带来的是并发编程中的强力并发工具-线程池,废话不多说让我们直接开始。
288 0
|
10月前
|
Linux
Linux编程: 在业务线程中注册和处理Linux信号
通过本文,您可以了解如何在业务线程中注册和处理Linux信号。正确处理信号可以提高程序的健壮性和稳定性。希望这些内容能帮助您更好地理解和应用Linux信号处理机制。
209 26

推荐镜像

更多