开发指南—数据类型—Collation类型

简介: 字符集(Character Set)是一组字符符号及编码方式的组合,collation是建立在某一字符集上的字符排序规则。本文汇总了PolarDB-X支持的collation类型。

PolarDB-X支持下表所列的collation类型。关于collation类型的详细信息,请参见Collations

字符集 collation
utf8 utf8_general_ci
utf8_bin
utf8_unicode_ci
utf8mb4 utf8mb4_general_ci
utf8mb4_bin
utf8mb4_unicode_ci
utf16 utf16_general_ci
utf16_bin
utf16_unicode_ci
ascii ascii_general_ci
ascii_bin
binary binary
latin1 latin1_swedish_ci
latin1_german1_ci
latin1_danish_ci
latin1_bin
latin1_general_ci
latin1_general_cs
latin1_spanish_ci
gbk gbk_chinese_ci
gbk_bin


相关文章
|
6月前
|
开发工具
【HarmonyOS 5】Integrating WeChat Sharing into HarmonyOS Applications
【HarmonyOS 5】Integrating WeChat Sharing into HarmonyOS Applications
261 9
|
缓存 API Android开发
Android经典实战之Kotlin Flow中的3个数据相关的操作符:debounce、buffer和conflate
本文介绍了Kotlin中`Flow`的`debounce`、`buffer`及`conflate`三个操作符。`debounce`过滤快速连续数据,仅保留指定时间内的最后一个;`buffer`引入缓存减轻背压;`conflate`仅保留最新数据。通过示例展示了如何在搜索输入和数据流处理中应用这些操作符以提高程序效率和用户体验。
249 6
|
7天前
|
数据采集 人工智能 安全
|
17天前
|
云安全 监控 安全
|
3天前
|
机器学习/深度学习 人工智能 前端开发
构建AI智能体:七十、小树成林,聚沙成塔:随机森林与大模型的协同进化
随机森林是一种基于决策树的集成学习算法,通过构建多棵决策树并结合它们的预测结果来提高准确性和稳定性。其核心思想包括两个随机性:Bootstrap采样(每棵树使用不同的训练子集)和特征随机选择(每棵树分裂时只考虑部分特征)。这种方法能有效处理大规模高维数据,避免过拟合,并评估特征重要性。随机森林的超参数如树的数量、最大深度等可通过网格搜索优化。该算法兼具强大预测能力和工程化优势,是机器学习中的常用基础模型。
286 164
|
2天前
|
机器学习/深度学习 自然语言处理 机器人
阿里云百炼大模型赋能|打造企业级电话智能体与智能呼叫中心完整方案
畅信达基于阿里云百炼大模型推出MVB2000V5智能呼叫中心方案,融合LLM与MRCP+WebSocket技术,实现语音识别率超95%、低延迟交互。通过电话智能体与座席助手协同,自动化处理80%咨询,降本增效显著,适配金融、电商、医疗等多行业场景。
296 155
|
4天前
|
机器学习/深度学习 人工智能 前端开发
构建AI智能体:六十九、Bootstrap采样在大模型评估中的应用:从置信区间到模型稳定性
Bootstrap采样是一种通过有放回重抽样来评估模型性能的统计方法。它通过从原始数据集中随机抽取样本形成多个Bootstrap数据集,计算统计量(如均值、标准差)的分布,适用于小样本和非参数场景。该方法能估计标准误、构建置信区间,并量化模型不确定性,但对计算资源要求较高。Bootstrap特别适合评估大模型的泛化能力和稳定性,在集成学习、假设检验等领域也有广泛应用。与传统方法相比,Bootstrap不依赖分布假设,在非正态数据中表现更稳健。
230 113